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Note :— This paper isof Thirty five (35) marks divided into
two (02) Sections‘A’ and ‘B’. Attempt the questions
contained in these Sections according to the detailed
instructions given there in. Candidates should limit
their answersto the questions on the given answer
sheet. No additional (B) answer sheet will be
issued.
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Note :— Section ‘A’ contains Five (05) Long-answer type
guestions of Nine and Half (9%2) marks each.
Learners are required to answer any two (02)
guestions only.
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2. If(x)=x3sin X0 and f(x) = 0, x = 0. Prove that

f(X) has aderivative at x = 0 and that f(x) and f €x) are

continuous at x = 0.
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Test for uniform convergence, the sequence {f.}, where
f (X)—T, x1 [0, 1].
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Prove that continuous image of a connected set is

connected.
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Prove that a necessary and sufficient condition for the
integrability of abounded function f isthat to every T >
0, there corresponds d > 0 such that for every partition
P of [a, b] with norm m(P) < d, U(P, f) —L(P, f) <T .
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Note :— Section ‘B’ contains Eight (08) Short-answer type
guestions of Four (04) marks each. Learners are

required to answer any four (04) questions only.
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1. Show that the set of rational numbers is not order-

complete.
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2. Provethat the derived set of a set is closed.
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3. Provethat the limit of a sequenceisunique.
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5.

Let (X, d) be any metric space. Show that the function
d, defined by :

d(ny) " yT X

d(x.y) = 1rd(xy)’
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Prove that every closed sphere is aclosed set.
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Prove that every sequentially compact metric space
(X, d) is compact.
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Show that every totally bounded metric space is
separable.
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