S-87

Total Pages : 4
Roll No.

MT-610

Mathematical Programming-II
MA/MSC Mathematics (MAMT/MSCMT)
4th Semester Examination, 2022 (Dec.)

Time : 2 Hours]

[Max. Marks : 35

Note : This paper is of Thirty Five (35) marks divided into two (02) Sections A and B. Attempt the questions contained in these sections according to the detailed instructions given therein.

SECTION-A
 (Long Answer Type Questions)

Note : Section 'A' contains Five (05) long answer type questions of Nine and Half ($91 / 2$) marks each. Learners are required to answer any Two (02) questions only.
($2 \times 91 / 2=19$)

1. Solve the following NLPP using the Kuhn-Tucker conditions

Maximize

$$
\begin{aligned}
& z=2 x_{1}^{2}-7 x_{2}^{2}+12 x_{1} x_{2} \\
& 2 x_{1}+5 x_{2} \leq 98, \\
& x_{1} \geq 0, x_{2} \geq 0 .
\end{aligned}
$$

Subject to
2. Use Beal's method to solve the following quadratic problem Maximize

$$
z=2 x_{1}+3 x_{2}-x_{1}^{2}
$$

Subject to

$$
\begin{aligned}
& x_{1}+2 x_{2} \leq 4, \\
& x_{1} \geq 0, x_{2} \geq 0 .
\end{aligned}
$$

3. Using Bellman's principle of optimality,

Minimize

$$
\begin{aligned}
& z=y_{1}^{2}+y_{2}^{2}+\ldots y_{n}^{2} \\
& y_{1}+y_{2}+\ldots+y_{n}=\mathrm{b}, \\
& y_{i} \geq 0 ; i=1,2, \ldots, n
\end{aligned}
$$

4. Solve the following LPP by dynamic programming

Maximize

$$
\begin{aligned}
& z=2 x_{1}+5 x_{2} \\
& 2 x_{1}+x_{2} \leq 430, \\
& 2 x_{2} \leq 460, \\
& x_{1} \geq 0, x_{2} \geq 0 .
\end{aligned}
$$

Subject to constraints
5. Discuss Convex Separable programming also write its algorithm.

SECTION-B

(Short Answer Type Questions)

Note : Section 'B' contains Eight (08) short answer type questions of Four (04) marks each. Learners are required to answer any Four (04) questions only. $\quad(4 \times 4=16)$

1. Give the characteristics of dynamic programming problems.
2. State Bellman's optimality principle.
3. Write recursive relations using dynamic programming to the problem

Maximize

$$
\begin{aligned}
& z=x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+x_{4}^{2} \\
& x_{1} x_{2} x_{3} x_{4}=16 \\
& x_{1} \geq 0, x_{2} \geq 0, x_{3} \geq 0, x_{4} \geq 0
\end{aligned}
$$

Subject to constraints
4. Write four applications of dynamic programming problem.
5. Write a short note on duality in quadratic programming.
6. Give a general framework for constrained non linear programming problem.
7. Write algorithm for Beal's method to solve quadratic programming problem.
8. Define the following :
(a) Separable function.
(b) Convex programming problem.

