Total Pages : 4

MT-610

Mathematical Programming-II

MA/MSC Mathematics (MAMT/MSCMT)

4th Semester Examination, 2022 (Dec.)

Time : 2 Hours]

[Max. Marks : 35

Note : This paper is of Thirty Five (35) marks divided into two (02) Sections A and B. Attempt the questions contained in these sections according to the detailed instructions given therein.

SECTION-A

(Long Answer Type Questions)

Note : Section 'A' contains Five (05) long answer type questions of Nine and Half (9½) marks each. Learners are required to answer any Two (02) questions only. (2×9½=19)

[P.T.O.

1. Solve the following NLPP using the Kuhn-Tucker conditions

Maximize	$z = 2x_1^2 - 7x_2^2 + 12x_1x_2$
Subject to	$2x_1 + 5x_2 \le 98,$
	$x_1 \ge 0, x_2 \ge 0.$

2. Use Beal's method to solve the following quadratic problem Maximize $z = 2x_1 + 3x_2 - x_1^2$ Subject to $x_1 + 2x_2 \le 4$, $x_1 \ge 0, x_2 \ge 0$.

3. Using Bellman's principle of optimality,

Minimize	$z = y_1^2 + y_2^2 + \dots y_n^2$
Subject to constraints	$y_1 + y_2 + \dots + y_n = b$,
	$y_i \ge 0; i = 1, 2,, n$

4. Solve the following LPP by dynamic programming Maximize $z = 2x_1 + 5x_2$ Subject to constraints $2x_1 + x_2 \le 430$, $2x_2 \le 460$,

$x_1 \ge$	$x = 0, x_2$	$\geq 0.$
<i>x</i> ₁ -	$. 0, n_2$	- 0.

5. Discuss Convex Separable programming also write its algorithm.

S-87/MT-610

[2]

SECTION-B

(Short Answer Type Questions)

- **Note :** Section 'B' contains Eight (08) short answer type questions of Four (04) marks each. Learners are required to answer any Four (04) questions only. (4×4=16)
- 1. Give the characteristics of dynamic programming problems.
- 2. State Bellman's optimality principle.
- **3.** Write recursive relations using dynamic programming to the problem

Maximize	$z = x_1^2 + x_2^2 + x_3^2 + x_4^2$
Subject to constraints	$x_1 x_2 x_3 x_4 = 16$
	$x_1 \ge 0, x_2 \ge 0, x_3 \ge 0, x_4 \ge 0$

- 4. Write four applications of dynamic programming problem.
- 5. Write a short note on duality in quadratic programming.
- **6.** Give a general framework for constrained non linear programming problem.
- **7.** Write algorithm for Beal's method to solve quadratic programming problem.

S-87/MT-610

- **8.** Define the following :
 - (a) Separable function.
 - (b) Convex programming problem.