## S-86

Total Pages : 4
Roll No.

## MT-609

## Integral Equations

MA/MSC Mathematics (MAMT/MSCMT)
4th Semester Examination, 2022 (Dec.)

## Time : 2 Hours]

[Max. Marks : 35
Note : This paper is of Thirty Five (35) marks divided into two (02) Sections A and B. Attempt the questions contained in these sections according to the detailed instructions given therein.

## SECTION-A <br> (Long Answer Type Questions)

Note : Section 'A' contains Five (05) long answer type questions of Nine and Half ( $91 / 2$ ) marks each. Learners are required to answer any Two (02) questions only. ( $2 \times 9^{1 / 2}=19$ )

1. Show that the function $g(x)=\frac{x}{\left(1+x^{2}\right)^{5 / 2}}$ is a solution of the integral equation

$$
g(x)=\frac{3 x+2 x^{3}}{3\left(1+x^{2}\right)^{2}}-\int_{0}^{x} \frac{3 x+2 x^{3}-t}{\left(1+x^{2}\right)^{2}} g(t) d t .
$$

2. Find the eigen values and eigen function of the homogeneous integral equation

$$
g(x)=\lambda \int_{0}^{\pi}\left(\cos ^{2} x \cos 2 t+\cos 3 x \cos ^{3} t\right) g(t) d t
$$

3. Solve the following integral equations :
(a) $g(x)=\sin x+\lambda \int_{4}^{10} x g(t) d t$.
(b) $\quad g(x)=1+\lambda \int_{0}^{\pi} \sin (x+t) g(t) d t$.
4. Solve the integral equation :

$$
g(x)=\left(1-2 x-4 x^{2}\right)+\int_{0}^{x}\left\{3+6(x-t)-4(x-t)^{2}\right\} g(t) d t
$$

5. Prove that the solution of the Fredholm Integral Equation

$$
g(x)=f(x)+\lambda \int_{a}^{b} R(x, s ; \lambda) f(t) d s
$$

is unique for any $\lambda$ provided that $\mathrm{D}(\lambda) \neq 0$.

## SECTION-B

## (Short Answer Type Questions)

Note : Section 'B' contains Eight (08) short answer type questions of Four (04) marks each. Learners are required to answer any Four ( 04 ) questions only. $\quad(4 \times 4=16)$

1. Show that the function $g(x)=1-x$ is a solution of the equation $\int_{0}^{x} e^{x-t} g(t) d t=x$.
2. Find the eigen values and eigen functions of the following homogeneous integral equation and solve it

$$
g(x)=\lambda \int_{0}^{1} e^{x} \cdot e^{t} g(t) d t .
$$

3. Convert the following differential equations into integral equations :
(a) $\frac{d^{2} y}{d x^{2}}+y=0$; $y(0)=0=y^{\prime}(0)$
(b) $\frac{d^{2} y}{d x^{2}}+\lambda x y=F(x)$; $y(0)=1 ; y^{\prime}(0)=0$
4. Solve the integral equation by the method of resolvent kernal

$$
g(x)=f(x)+\lambda \int_{0}^{1} e^{x-t} g(t) d t
$$

5. Define following with example :
(a) Singular integral.
(b) Convolution integral.
(c) Fredholm integral equation of first and second kind.
(d) Volterra integral equation of first and second kind.
6. Solve the homogeneous Fredholm integral equation

$$
g(x)=\lambda \int_{0}^{1} e^{x} \cdot e^{t} \phi(t) d t
$$

7. Solve the following integro-differential equation :

$$
g^{\prime}(x)=\sin x+\int_{0}^{x} g(x-t) \cos t d t
$$

where $g(0)=0$.
8. Solve the following integral equation by the method of successive approximations to third order

$$
g(x)=1+\lambda \int_{0}^{1}(x+t) g(t) d t, \text { by taking } g_{0}(x)=1
$$

