Total Pages : 4

Roll No.

MT-608

Numerical Analysis-II

MA/MSC Mathematics (MAMT/MSCMT)

4th Semester Examination, 2022 (Dec.)

Time : 2 Hours]

[Max. Marks : 35

Note : This paper is of Thirty Five (35) marks divided into two (02) Sections A and B. Attempt the questions contained in these sections according to the detailed instructions given therein.

SECTION-A

(Long Answer Type Questions)

Note : Section 'A' contains Five (05) long answer type questions of Nine and Half (9½) marks each. Learners are required to answer any Two (02) questions only. (2×9½=19)

[P.T.O.

1. Using the method of least-squares find a straight line that fits the following data :

x	1	2	3	4	5	6
y	2.6	2.7	2.9	3.025	3.2	3.367

Also find the value of *y* at x = 5.5.

2. Compute y(0.4) by Adams-Moulton method, given that

$$\frac{dy}{dt} = ty, \ y(0) = 1$$

y(0.1) = 1.01, y(0.2) = 1.022, y(0.2) = 1.023.

3. Solve the boundary value problem by Numerov method

$$\frac{d^2 y}{dx^2} = x + y, \ y(0) = 0, \ y(1) = 0$$

With step size $h = \frac{1}{2}$.

4. Use fourth order Runge-Kutta method to compute y(0.4), given that

$$\frac{dy}{dt} = -2t - y, y(0) = -1 \qquad [Take step size h = 0.1]$$

5. Compute the constant α and γ^{β} such that $y = \alpha \gamma^{\beta x}$ fits the given data.

x	1	2	3	4	5	6
у	151	100	61	50	20	8

SECTION-B

(Short Answer Type Questions)

- **Note :** Section 'B' contains Eight (08) short answer type questions of Four (04) marks each. Learners are required to answer any Four (04) questions only. (4×4=16)
- 1. Express $1 x^2 + 2x^4$ as a sum of Chebyshev Polynomial.
- 2. Find the best lower degree approximation polysomial to $2x^3 + 5x^2$.
- 3. Use Picard's method to compare y(2.1), where y(t) is the solution to the given IVP $\frac{dy}{dt} = 1 + ty$, y(2) = 0, Perform upto third approximation.
- 4. Using Taylor's series method, solve

$$\frac{dy}{dt} = y \sin t + \cos t$$
, for some t, given that $y(0) = 1$.

S-85 / MT-608

- 5. Use fourth order Runge-Kutta method to compute y(2.1), given that $\frac{dy}{dt} = -2t - y$, y(0) = -1 [Take step size h = 0.1]
- 6. Obtain the second-degree polynomial approximation to the function $f(x) = \frac{1}{1+x^2}, x \in [1,1.2]$ using Taylor series expansion about x = 1. Find a bound on the truncation error.
- 7. Solve the boundary value problem

$$\frac{d^2 y}{dx^2} = \frac{3}{2} y^2, \ y(0) = 4, \ y(1) = 1$$

With step size $h = \frac{1}{3}$, using second order method.

- **8.** Define the following :
 - (a) Orthogonal Polynomial.
 - (b) Chebyshev Polynomial.