S-85

Total Pages : 4
Roll No.

MT-608

Numerical Analysis-II

MA/MSC Mathematics (MAMT/MSCMT) 4th Semester Examination, 2022 (Dec.)

Time : 2 Hours]

[Max. Marks : 35

Note : This paper is of Thirty Five (35) marks divided into two (02) Sections A and B. Attempt the questions contained in these sections according to the detailed instructions given therein.

SECTION-A
 (Long Answer Type Questions)

Note : Section 'A' contains Five (05) long answer type questions of Nine and Half ($91 / 2$) marks each. Learners are required to answer any Two (02) questions only. ($2 \times 91 / 2=19$)

1. Using the method of least-squares find a straight line that fits the following data :

x	1	2	3	4	5	6
y	2.6	2.7	2.9	3.025	3.2	3.367

Also find the value of y at $x=5.5$.
2. Compute $y(0.4)$ by Adams-Moulton method, given that

$$
\begin{aligned}
& \frac{d y}{d t}=t y, y(0)=1 \\
& y(0.1)=1.01, y(0.2)=1.022, y(0.2)=1.023
\end{aligned}
$$

3. Solve the boundary value problem by Numerov method

$$
\frac{d^{2} y}{d x^{2}}=x+y, y(0)=0, y(\mathrm{l})=0
$$

With step size $h=\frac{1}{2}$.
4. Use fourth order Runge-Kutta method to compute $y(0.4)$, given that

$$
\frac{d y}{d t}=-2 t-y, y(0)=-1
$$

[Take step size $h=0.1$]
5. Compute the constant α and γ^{β} such that $y=\alpha \gamma^{\beta x}$ fits the given data.

x	1	2	3	4	5	6
y	151	100	61	50	20	8

SECTION-B

(Short Answer Type Questions)
Note : Section 'B' contains Eight (08) short answer type questions of Four (04) marks each. Learners are required to answer any Four (04) questions only. $\quad(4 \times 4=16)$

1. Express $1-x^{2}+2 x^{4}$ as a sum of Chebyshev Polynomial.
2. Find the best lower degree approximation polysomial to $2 x^{3}+5 x^{2}$.
3. Use Picard's method to compare $y(2.1)$, where $y(t)$ is the solution to the given IVP $\frac{d y}{d t}=1+t y, y(2)=0$, Perform upto third approximation.
4. Using Taylor's series method, solve

$$
\frac{d y}{d t}=y \sin t+\cos t, \text { for some } t, \text { given that } y(0)=1 .
$$

5. Use fourth order Runge-Kutta method to compute $y(2.1)$, given that $\frac{d y}{d t}=-2 t-y, y(0)=-1[$ Take step size $h=0.1]$
6. Obtain the second-degree polynomial approximation to the function $f(x)=\frac{1}{1+x^{2}}, x \in[1,1.2]$ using Taylor series expansion about $x=1$. Find a bound on the truncation error.
7. Solve the boundary value problem
$\frac{d^{2} y}{d x^{2}}=\frac{3}{2} y^{2}, y(0)=4, y(1)=1$

With step size $h=\frac{1}{3}$, using second order method.
8. Define the following :
(a) Orthogonal Polynomial.
(b) Chebyshev Polynomial.

