Total Pages: 4 Roll No.

MT-605

Mathematical Programming-I

MA/MSC Mathematics (MAMT/MSCMT)

3rd Semester Examination, 2022 (Dec.)

Time: 2 Hours] [Max. Marks: 35

Note: This paper is of Thirty Five (35) marks divided into two (02) Sections A and B. Attempt the questions contained in these sections according to the detailed instructions given therein.

SECTION-A

(Long Answer Type Questions)

Note: Section 'A' contains Five (05) long answer type questions of Nine and Half (9½) marks each. Learners are required to answer any Two (02) questions only. Calculator is allowed for this paper. (2×9½=19)

S-82/MT-605 [P.T.O.

1. Use revised simplex method to solve the following LPP

Maximize
$$z = 2x_1 + x_2$$

Subject to $3x_1 + 4x_2 \le 6$, $6x_1 + x_2 \le 3$, $x_1 \ge 0$, $x_2 \ge 0$.

- **2.** Discuss branch and bound algorithm for integer programming problem.
- **3.** Use the method of Lagrangean multipliers to solve the following NLPP. Does the solution maximize or minimize the objective function?

Optimize
$$z = 2x_1^2 + x_2^2 + 3x_3^2 + 10x_1 + 8x_2 + 8x_3 - 100$$

Subject to $x_1 + x_2 + x_3 = 20$
 $x_1 \ge 0, x_2 \ge 0, x_3 \ge 0.$

4. Solve the LPP

Maximize
$$z = 2x_1 + x_2$$

Subject to $3x_1 + 4x_2 \le 6$,
 $6x_1 + x_2 \le 3$,
 $x_1 \ge 0$, $x_2 \ge 0$.

- **5.** Write short notes on the following:
 - (a) Convex function.
 - (b) Quadratic forms.
 - (c) Saddle points.

SECTION-B

(Short Answer Type Questions)

Note: Section 'B' contains Eight (08) short answer type questions of Four (04) marks each. Learners are required to answer any Four (04) questions only. (4×4=16)

- 1. Write the algorithm for the bounded variables problem.
- **2.** Write the algorithm for Gomory Fractional method for all integers.
- 3. Find the saddle point to the function $f(x_1, x_2) = 18x_1x_2 + 5x_2^2$.
- 4. Write necessary conditions to the NLPP

Maximize
$$z = -x_1^2 - x_2^2 + 4x_1 + 8x_2$$

Subject to $x_1 + x_2 = 2$
 $x_1 \ge 0, x_2 \ge 0.$

5. Obtain the sufficient conditions to the NLPP

Optimize
$$z = x_1^2 + x_2^2 + x_3^2 - 10x_1 - 6x_2 - 4x_3$$

Subject to $x_1 + x_2 + x_3 = 7$
 $x_1 \ge 0, x_2 \ge 0, x_3 \ge 0.$

6. Determine whether the following function is concave, convex or neither

$$f(X) = x_1 x_2 - x_1^2 - x_2^2$$

- **7.** Discuss fundamental ingredients in non linear programming problem.
- **8.** Write short notes on :
 - (a) Revised simplex method.
 - (b) Integer programming.