S-82

Total Pages : 4
Roll No.

MT-605

Mathematical Programming-I

MA/MSC Mathematics (MAMT/MSCMT)

3rd Semester Examination, 2022 (Dec.)

Time : 2 Hours]

[Max. Marks : 35

Note : This paper is of Thirty Five (35) marks divided into two (02) Sections A and B. Attempt the questions contained in these sections according to the detailed instructions given therein.

SECTION-A
 (Long Answer Type Questions)

Note : Section 'A' contains Five (05) long answer type questions of Nine and Half ($91 / 2$) marks each. Learners are required to answer any Two (02) questions only. Calculator is allowed for this paper. ($2 \times 9^{1 / 2}=19$)

1. Use revised simplex method to solve the following LPP

Maximize

$$
\begin{aligned}
& z=2 x_{1}+x_{2} \\
& 3 x_{1}+4 x_{2} \leq 6 \\
& 6 x_{1}+x_{2} \leq 3 \\
& x_{1} \geq 0, x_{2} \geq 0
\end{aligned}
$$

Subject to
2. Discuss branch and bound algorithm for integer programming problem.
3. Use the method of Lagrangean multipliers to solve the following NLPP. Does the solution maximize or minimize the objective function?

Optimize

$$
z=2 x_{1}^{2}+x_{2}^{2}+3 x_{3}^{2}+10 x_{1}+8 x_{2}+8 x_{3}-100
$$

Subject to

$$
\begin{aligned}
& x_{1}+x_{2}+x_{3}=20 \\
& x_{1} \geq 0, x_{2} \geq 0, x_{3} \geq 0
\end{aligned}
$$

4. Solve the LPP

Maximize	$z=2 x_{1}+x_{2}$
Subject to	$3 x_{1}+4 x_{2} \leq 6$,
	$6 x_{1}+x_{2} \leq 3$,
	$x_{1} \geq 0, x_{2} \geq 0$.

5. Write short notes on the following :
(a) Convex function.
(b) Quadratic forms.
(c) Saddle points.

SECTION-B

(Short Answer Type Questions)

Note : Section 'B' contains Eight (08) short answer type questions of Four (04) marks each. Learners are required to answer any Four (04) questions only. $\quad(4 \times 4=16)$

1. Write the algorithm for the bounded variables problem.
2. Write the algorithm for Gomory Fractional method for all integers.
3. Find the saddle point to the function $f\left(x_{1}, x_{2}\right)=18 x_{1} x_{2}+$ $5 x_{2}{ }^{2}$.
4. Write necessary conditions to the NLPP

Maximize $z=-x_{1}^{2}-x_{2}^{2}+4 x_{1}+8 x_{2}$
Subject to

$$
\begin{aligned}
& x_{1}+x_{2}=2 \\
& x_{1} \geq 0, x_{2} \geq 0 .
\end{aligned}
$$

5. Obtain the sufficient conditions to the NLPP

Optimize $\quad z=x_{1}^{2}+x_{2}^{2}+x_{3}^{2}-10 x_{1}-6 x_{2}-4 x_{3}$
Subject to $x_{1}+x_{2}+x_{3}=7$

$$
x_{1} \geq 0, x_{2} \geq 0, x_{3} \geq 0 .
$$

6. Determine whether the following function is concave, convex or neither

$$
f(\mathrm{X})=x_{1} x_{2}-x_{1}^{2}-x_{2}^{2}
$$

7. Discuss fundamental ingredients in non linear programming problem.
8. Write short notes on :
(a) Revised simplex method.
(b) Integer programming.
