Total Pages : 4

Roll No.

MT-604

Integral Transforms

M.A./M.Sc. Mathematics (MAMT/MSCMT)

3rd Semester Examination, 2022 (Dec.)

Time : 2 Hours]

[Max. Marks : 35

Note : This paper is of Thirty Five (35) marks divided into two (02) Sections A and B. Attempt the questions contained in these sections according to the detailed instructions given therein.

SECTION-A (Long Answer Type Questions)

Note : Section 'A' contains Five (05) long answer type questions of Nine and Half (9¹/₂) marks each. Learners are required to answer any Two (02) questions only. (2×9¹/₂=19)

1. Find
$$L^{-1}\left[\frac{\cosh u\sqrt{P}}{P\cosh \sqrt{P}}\right]$$
, where $0 < u < 1$.

2. Solve t y'' + (t - 1)y' - y = 0, y(0) = 5, $y(\infty) = 0$.

S-81/MT-604

[P.T.O.

3. State and Prove Convolution Theorem for Fourier Transforms.

4. Solve $\frac{\partial U}{\partial t} = \frac{\partial^2 U}{\partial x^2}$, x > 0, t > 0 subject to conditions :

(a)
$$U(0, t) = 0.$$

(b) U =
$$\begin{cases} 1, & 0 < x < 1 \\ 0, & x \ge 1 \end{cases}$$
 when $t = 0$.

- (c) U(x, t) is bounded.
- 5. Define :
 - (a) Laguerre polynomial.
 - (b) Hypergeometric Function.
 - (c) Beta Function.
 - (d) Bessel Function.

SECTION-B (Short Answer Type Questions)

- **Note :** Section 'B' contains Eight (08) short answer type questions of Four (04) marks each. Learners are required to answer any Four (04) questions only. (4×4=16)
- **1.** Find the Laplace transform of :
 - (a) $e^{-2t} \sin 5t + 4 \cos 7t + 9t^3 5$.
 - (b) $\cosh^2 4t$.

S-81 / MT-604

2. Find fourier transform of f(t) defined by $f(t) = \begin{cases} 1, & |t| < a \\ 0, & |t| \ge a \end{cases}$

and hence prove that
$$\int_{0}^{\infty} \frac{\sin^2 at}{t^2} dt = \frac{\pi a}{2}.$$

3. Find the Mellin Transform of sin *x* and show that

$$M^{-1}\left\{\Gamma(p)\sin\left(\frac{p\pi}{2}\right)f^{*}(1-p);x\right\} = \sqrt{\frac{\pi}{2}} F_{s}\{f(t);x\},$$

where $f^{*}(p) = M(f(t); p)$.

4. Find the Hankel transform of $\frac{\sin ax}{x}$ taking $xJ_0(px)$ as the kernel.

5. If
$$L^{-1}\left\{\frac{p^2-1}{(p^2+1)^2}; t\right\} = t \cos t$$
, then find $L^{-1}\left\{\frac{9p^2-1}{9p^2+1}; t\right\}$.

- 6. Solve $(D^2 + 1)y = t^2 \cos 2t$, y = 0, dy/dt = 0 when t = 0.
- 7. Prove that

$$\begin{split} H_{\nu} \{ x^{\nu} (a^2 - x^2)^{\mu - \nu - 1} \mathrm{U}(a - x); p \} \\ &= 2^{\mu - \nu - 1} \Gamma(\mu - \nu) \; p^{\nu - \mu} \; a^{\mu} \mathrm{J}_{\mu}(pa), \; a > 0, \; \mu > \nu \end{split}$$

S-81 / MT-604

[P.T.O.

8. If the flow of heat is linear so that the variation of θ (temperature) with z and y-axes may be neglected and if it is assumed that no heat is generated in the medium,

then solve the differential equation $\frac{\partial \theta}{\partial t} = k \frac{\partial^2 \theta}{\partial x^2}$, where

 $-\infty < x < \infty$ and $\theta = f(x)$ when t = 0, f(x) being a given function of *x*.