S-81

Total Pages : 4
Roll No.

MT-604

Integral Transforms

M.A./M.Sc. Mathematics (MAMT/MSCMT)

3rd Semester Examination, 2022 (Dec.)

Time : 2 Hours]

[Max. Marks : 35
Note : This paper is of Thirty Five (35) marks divided into two (02) Sections A and B. Attempt the questions contained in these sections according to the detailed instructions given therein.

SECTION-A
 (Long Answer Type Questions)

Note : Section 'A' contains Five (05) long answer type questions of Nine and Half ($91 / 2$) marks each. Learners are required to answer any Two (02) questions only. ($2 \times 91 / 2=19$)

1. Find $L^{-1}\left[\frac{\cosh u \sqrt{P}}{P \cosh \sqrt{P}}\right]$, where $0<u<1$.
2. Solve $t y^{\prime \prime}+(t-1) y^{\prime}-y=0, y(0)=5, y(\infty)=0$.
3. State and Prove Convolution Theorem for Fourier Transforms.
4. Solve $\frac{\partial U}{\partial t}=\frac{\partial^{2} U}{\partial x^{2}}, x>0, t>0$ subject to conditions :
(a) $\mathrm{U}(0, t)=0$.
(b) $\mathrm{U}=\left\{\begin{array}{rr}1, & 0<x<1 \\ 0, & x \geq 1\end{array}\right.$ when $t=0$.
(c) $\mathrm{U}(x, t)$ is bounded.
5. Define :
(a) Laguerre polynomial.
(b) Hypergeometric Function.
(c) Beta Function.
(d) Bessel Function.

SECTION-B
 (Short Answer Type Questions)

Note : Section 'B' contains Eight (08) short answer type questions of Four (04) marks each. Learners are required to answer any Four (04) questions only. $\quad(4 \times 4=16)$

1. Find the Laplace transform of :
(a) $e^{-2 t}-\sin 5 t+4 \cos 7 t+9 t^{3}-5$.
(b) $\cosh ^{2} 4 t$.
2. Find fourier transform of $f(t)$ defined by $f(t)= \begin{cases}1, & |t|<a \\ 0, & |t| \geq a\end{cases}$ and hence prove that $\int_{0}^{\infty} \frac{\sin ^{2} a t}{t^{2}} d t=\frac{\pi a}{2}$.
3. Find the Mellin Transform of $\sin x$ and show that

$$
M^{-1}\left\{\Gamma(p) \sin \left(\frac{p \pi}{2}\right) f^{*}(1-p) ; x\right\}=\sqrt{\frac{\pi}{2}} F_{s}\{f(t) ; x\}
$$

where $f^{*}(p)=\mathrm{M}(f(t) ; p)$.
4. Find the Hankel transform of $\frac{\sin a x}{x}$ taking $x \mathrm{~J}_{0}(p x)$ as the kernel.
5. If $\mathrm{L}^{-1}\left\{\frac{p^{2}-1}{\left(p^{2}+1\right)^{2}} ; t\right\}=t \cos t$, then find $\mathrm{L}^{-1}\left\{\frac{9 p^{2}-1}{\left.9 p^{2}+1\right)^{2}} ; t\right\}$.
6. Solve $\left(\mathrm{D}^{2}+1\right) y=t^{2} \cos 2 t, y=0, d y / d t=0$ when $t=0$.
7. Prove that

$$
\begin{aligned}
& H_{v}\left\{x^{v}\left(a^{2}-x^{2}\right)^{\mu-v-1} \mathrm{U}(a-x) ; p\right\} \\
& \quad=2^{\mu-v-1} \Gamma(\mu-v) p^{v-\mu} a^{\mu} \mathrm{J}_{\mu}(p a), a>0, \mu>v
\end{aligned}
$$

8. If the flow of heat is linear so that the variation of θ (temperature) with z and y-axes may be neglected and if it is assumed that no heat is generated in the medium, then solve the differential equation $\frac{\partial \theta}{\partial t}=k \frac{\partial^{2} \theta}{\partial x^{2}}$, where $-\infty<x<\infty$ and $\theta=f(x)$ when $t=0, f(x)$ being a given function of x.
