S-80

Total Pages : 4
Roll No.

MT-603

Numerical Analysis-I

MA/MSC Mathematics (MAMT/MSCMT)
3rd Semester Examination, 2022 (Dec.)

Time : 2 Hours]

[Max. Marks : 35
Note : This paper is of Thirty Five (35) marks divided into two (02) Sections A and B. Attempt the questions contained in these sections according to the detailed instructions given therein.

SECTION-A
 (Long Answer Type Questions)

Note : Section 'A' contains Five (05) long answer type questions of Nine and Half ($9^{1} / 2$) marks each. Learners are required to answer any Two (02) questions only. Calculator is allowed in this paper. ($2 \times 91 / 2=19$)

1. Use Gauss-Jordan method to solve the following linear equations

$$
\begin{aligned}
& 10 x+y+z=12 \\
& 2 x+10 y+z=13 \\
& x+y+5 z=7
\end{aligned}
$$

2. Find all the eigenvalue and eigenvector of the matrix
$A=\left[\begin{array}{ccc}1 & \sqrt{2} & 2 \\ \sqrt{2} & 3 & \sqrt{2} \\ 2 & \sqrt{2} & 1\end{array}\right]$, using Jacobi method (perform two iteration).
3. Using the Rutishauser method, find all the eigenvalues of the matrix $\mathrm{A}=\left[\begin{array}{ll}4 & 3 \\ 1 & 2\end{array}\right]$.
4. Find the root of the equation $x^{3}-x^{2}-x-1=0$ using Newton-Raphson method.
5. Define the following :
(a) Bisection Method.
(b) Regula Falsi Method.
(c) Secant Method.
(d) Newton-Raphson Method.

SECTION-B

(Short Answer Type Questions)

Note : Section 'B' contains Eight (08) short answer type questions of Four (04) marks each. Learners are required to answer any Four (04) questions only. $\quad(4 \times 4=16)$

1. State and Prove the Newton-Raphson method.
2. Find the root of the equation $\log x-\cos x=0$ by bisection method upto third approximation.
3. Find square of 13 using Chebyshev method upto third approximation.
4. Find a real root of the equation $x^{4}+7 x^{3}+24 x^{2}-15=0$, using Birge-Vieta method. Perform two iterations.
5. Using the method of determinant solve the given system of equations

$$
\begin{aligned}
& x+y+z=3 \\
& 2 x-y+z=2 \\
& x-2 y+3 z=2
\end{aligned}
$$

6. Obtain the largest eigenvalue in magnitude and corresponding eigenvector of the matrix.

$$
A=\left[\begin{array}{rrr}
-5 & 2 & 1 \\
1 & -9 & -1 \\
2 & -1 & 7
\end{array}\right]
$$

7. Find all the roots of the polynomial equation $x^{3}-3 x^{2}-6 x+$ $8=0$, using Graeffe's root squaring method.
8. Find real root of the equation $x^{3}-2 x-5=0$ using secant method.
