S-78

Roll No.

MT-601

Analysis and Advanced Calculus-I MA/MSC Mathematics (MAMT/MSCMT)

3rd Semester Examination, 2022 (Dec.)

Time : 2 Hours]

[Max. Marks : 35
Note : This paper is of Thirty Five (35) marks divided into two (02) Sections A and B. Attempt the questions contained in these sections according to the detailed instructions given therein.

SECTION-A
 (Long Answer Type Questions)

Note : Section 'A' contains Five (05) long answer type questions of Nine and Half ($91 / 2$) marks each. Learners are required to answer any Two (02) questions only. ($2 \times 9^{1 / 2}=19$)

1. Let p be a real number such that $1 \leq p<\infty$. Show that the space l_{p}^{n} of all n-tuples of scalars with the norm defined by $\|x\|_{p}=\left\{\sum_{i=1}^{n}\left|x_{i}\right|^{p}\right\}^{\frac{1}{p}}$ is a Banach space.
2. Define (i) Inner product spce (ii) Hilbert space and give an example.
3. Give an example of an inner product space which is not a Hilbert space.
4. State and prove BessePs inequality in Hilbert space.
5. State and prove of Open mapping Theorem.

SECTION-B

(Short Answer Type Questions)
Note : Section 'B' contains Eight (08) short answer type questions of Four (04) marks each. Learners are required to answer any Four (04) questions only. $\quad(4 \times 4=16)$

1. Prove that every convergent sequence in a normed linear space is a Cauchy sequence.
2. Prove that on a finite dimensional linear space X, all norms are equivalent.
3. Prove that if a normed space N is reflexive, it is complete. -
4. Prove that every Hilbert space is reflexive.
5. Check that the space l^{p} with $p \neq 2$ is an inner product space or not.
6. State and prove Polarisation Identity.
7. Let M be a linear subspace of Hiibert space H. Then M is closed if and only if $M=M^{\perp \perp}$.
8. Define an orthonormal set and complete orthonormal set with example.
