S-77

Total Pages : 4
Roll No.

MT-510

Mechanics-II

MA/MSC Mathematics (MAMT/MSCMT)
2nd Semester Examination, 2022 (Dec.)

Time : 2 Hours]

[Max. Marks : 35

Note : This paper is of Thirty Five (35) marks divided into two (02) Sections A and B. Attempt the questions contained in these sections according to the detailed instructions given therein.

SECTION-A
 (Long Answer Type Questions)

Note : Section 'A' contains Five (05) long answer type questions of Nine and Half ($9^{1 / 2}$) marks each. Learners are required to answer any Two (02) questions only.
($2 \times 91 / 2=19$)

1. If initially the axis of the top is horizontal and it is set spinning with angular velocity w in a horizontal plane, prove that the axis will start to rise if $n \mathrm{C} w>m g h$ and that, when $n \mathrm{C} w=2 m g h$, the axis will be rise to an angular distance $\cos ^{-1}\left(\frac{\mathrm{~A} w}{n c}\right)$, provided that $\mathrm{A} w<n \mathrm{C}$, and will there be instantaneous rest. A, C and n have their usual meanings.
2. State and prove the principle of least action for a conservation holonomic system.
3. The velocity field at a point in fluid is given as $\vec{q}=\frac{x}{t} \hat{i}+y \hat{j}+0 . \hat{k}$, obtain path lines.
4. Find the equation of continuity in Lagrange's method. Show that it is equivalent to $\frac{\partial \rho}{\partial t}+\rho\left(\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}+\frac{\partial w}{\partial z}\right)=0$.
5. State and prove Bernoulli's theorem.

SECTION-B

(Short Answer Type Questions)

Note : Section 'B' contains Eight (08) short answer type questions of Four (04) marks each. Learners are required to answer any Four (04) questions only. $\quad(4 \times 4=16)$

1. Show that $u=\frac{-2 x y z}{\left(x^{2}+y^{2}\right)^{2}}, v=\frac{\left(x^{2}-y^{2}\right) z}{\left(x^{2}+y^{2}\right)^{2}}$ and
$w=\frac{y}{\left(x^{2}+y^{2}\right)}$ are the velocity components of a possible fluid motion. Is this motion irrotational ?
2. A mass of fluid moves in such a way that each particle describes a circle in one plane about a fixed axis. Show that the equation of continuity is

$$
\frac{\partial p}{\partial t}+\frac{\partial(\rho w)}{\partial \theta}=0 .
$$

3. Show that the ellipsoid

$$
\frac{x^{2}}{a^{2} k^{2} t^{2 n}}+k t^{n}\left(\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}\right)=1
$$

is a possible form of the boundary surface of a liquid.
4. Liquid is contained between two parallel planes, the surface is a circular cylinder of radius a whose axis is perpendicular to the planes. All the liquid within a concentric circular cylinder of radius b is suddenly annihilated. Prove that if π be the pressure at the outer surface, the initial pressure at any point on the liquid distance r from the centre is

$$
\pi \frac{\log r-\log b}{\log a-\log b}
$$

5. What arrangement of sources and sinks will give rise to the function $w=m \log \frac{\left(z^{2}-a\right)}{z}$? Draw a rough sketch of a stream line. Prove that two of the stream lines sub divide into the circle $r=0$ and the axis of y.
6. To determine the image of the source with respect to a circle.
7. In irrotational motion in two dimension, prove that

$$
\left(\frac{\partial q}{\partial x}\right)^{2}+\left(\frac{\partial q}{\partial y}\right)^{2}=q \nabla^{2} q .
$$

8. Define the following :
(a) Velocity potential.
(b) Doublet.
