S-76

Total Pages : 3
Roll No.

MT-509

Differential Geometry and Tensor-II

MA/MSC Mathematics (MAMT/MSCMT)
2nd Semester Examination, 2022 (Dec.)

Time : 2 Hours]
[Max. Marks : 35
Note : This paper is of Thirty Five (35) marks divided into two (02) Sections A and B. Attempt the questions contained in these sections according to the detailed instructions given therein.

SECTION-A
 (Long Answer Type Questions)

Note : Section 'A' contains Five (05) long answer type questions of Nine and Half ($91 / 2$) marks each. Learners are required to answer any Two (02) questions only. ($2 \times 9^{11 / 2=19 \text {) }) ~}$

1. Prove that there is no distinction between contravariant and Co-variant tensors when we restrict ourselves to rectangular Cartesian transformation of Co-ordinates.
2. Prove that christoffel symbols vanish identically if and only if $g_{i j}$'s are constants.
3. Prove that the curves of the family $\frac{V^{3}}{u^{3}}=$ Constant are geodesies on a surface with metric.

$$
\mathrm{V}^{2} d u^{2}-2 u v d u d v+2 u^{2} d v^{2} ; u>o, v>o .
$$

4. Prove that a necessary and sufficient condition that a curve on a developable surface be a geodesic is that the surface be the rectifying developable of the curve.
5. State and prove Gauss-Bonnet theorem.

SECTION-B

(Short Answer Type Questions)

Note : Section 'B' contains Eight (08) short answer type questions of Four (04) marks each. Learners are required to answer any Four (04) questions only. $\quad(4 \times 4=16)$

1. If A_{i} is a covariant vector, then prove that $\left(\frac{\partial A_{i}}{\partial x^{j}}-\frac{\partial A_{j}}{\partial x^{i}}\right)$ is a covariant tensor of rank 2.
2. Prove that $\delta_{j}^{i} a^{j k}=a^{i k}$.
3. If λ_{i} and μ^{i} are the components of a covariant and contravariant vector respectively, then prove that the Sum $\lambda_{i} \mu^{i}$ is an invariant.
4. Prove that the magnitude of a vector is an invariant.
5. A particle is constrained to move on a smooth surface under no forces except the normal reaction. Show that its path is a geodesic.
6. If a geodesic on a surface of revolution cuts the meridians at a constant angle, then prove that the surface is a right cylinder.
7. Write a short note on 'Bonnet's formula' for geodesic curvature.
8. Prove that on a surface of negative curvature, two geodesies cannot meet in two points and enclose a simply connected area.
