S-75

Total Pages : 3
Roll No.
MT-508

Special Functions

MA/MSC Mathematics (MAMT/MSCMT)
2nd Semester Examination, 2022 (Dec.)

Time : 2 Hours]
[Max. Marks : 35

Note : This paper is of Thirty Five (35) marks divided into two (02) Sections A and B. Attempt the questions contained in these sections according to the detailed instructions given therein.

SECTION-A
 (Long Answer Type Questions)

Note : Section 'A' contains Five (05) long answer type questions of Nine and Half ($(1 / 2)$ marks each. Learners are required to answer any Two (02) questions only. ($2 \times 9^{11 / 2=19 \text {) }) ~}$

1. Define :
(a) Ordinary and Singular point.
(b) Regular Singular point.
(c) Radius of convergence.
(d) Irregular singular point.
2. Prove that $J_{n}(x)=(-2)^{n} x^{n} \frac{d^{n}}{d\left(x^{2}\right)^{n}} . J_{0}(x)$.
3. Discuss differentiation and integral representations for the Hypergeometric Junction.
4. Prove that $n\left[\mathrm{P}_{n} \mathrm{Q}_{n-1}-\mathrm{Q}_{n} \mathrm{P}_{n-1}\right]=1$.
5. Show that the Hermite polynomials are orthogonal over $(-\infty, \infty)$ with respect to the weight function $e^{-x^{2}}$.

SECTION-B

(Short Answer Type Questions)

Note : Section 'B' contains Eight (08) short answer type questions of Four (04) marks each. Learners are required to answer any Four (04) questions only. $\quad(4 \times 4=16)$

1. Define :
(a) Hevmite polynomials.
(b) Bessel Functions.
2. Show that Hypergeometric function does not change if the parameters α and β are interchanged, keeping γ fixed.
3. Show that $\mathrm{J}_{-n}(x)=(-1)^{n} \mathrm{~J}_{n}(x)$.
4. Show that $\mathrm{L}_{n}^{\prime}(0)=-n$.
5. Prove that $\mathrm{H}_{5}(x)=32 x^{5}-160 x^{3}+120 x$.
6. Show that $L_{n}(x)=\frac{e^{x}}{n!} \frac{d^{n}}{d x^{n}}\left(x^{n} e^{-x}\right)$.
7. Prove that $\mathrm{H}_{2 n+1}(0)=0$.
8. Prove that $\mathrm{J}_{-1 / 2}(x)=\sqrt{ }\left(\frac{2}{\pi x}\right) \cos x$.
