S-71

Total Pages : 3
Roll No

MT-504

Differential Geometry and Tensor-I

 MA/MSC Mathematics (MAMT/MSCMT)1st Semester Examination, 2022 (Dec.)

Time : 2 Hours]

[Max. Marks : 35
Note : This paper is of Thirty Five (35) marks divided into two (02) Sections A and B. Attempt the questions contained in these sections according to the detailed instructions given therein.

SECTION-A
 (Long Answer Type Questions)

Note : Section 'A' contains Five (05) long answer type questions of Nine and Half ($91 / 2$) marks each. Learners are required to answer any Two (02) questions only. ($2 \times 9^{11 / 2=19 \text {) }) ~}$

1. Show that the tangent at any point of the curve whose equations are $x=3 u, y=3 u^{2}, z=2 u^{3}$, makes a constant angle with the line $y=z-x=o$
2. State and prove Serret-Frenet formulae.
3. Find the plane that has three point contact at the origin with the curve $x=u^{4}-1, y=u^{3}-1, z=u^{2}-1$.
4. Find the radii of curvature and torsion of the helix $x=a \cos$ $u, y=a \sin u, z=a u \tan \alpha$.
5. State \& Prove Meunier's theorem.

SECTION-B
 (Short Answer Type Questions)

Note : Section 'B' contains Eight (08) short answer type questions of Four (04) marks each. Learners are required to answer any Four (04) questions only. $\quad(4 \times 4=16)$

1. Find the length of one complete turn of the circular helix $\vec{r}=a \cos u i+a \sin u j+c u k ;-\infty<u<\infty$.
2. Define osculating plane, normal plane \& rectifying plane of a space curve.
3. Prove that the necessary \& sufficient condition for the curve to be a plane curve is $\left[r^{I}, r^{I I}, r^{I I I}\right]=0$
4. Prove that for all helices, curvature bears a constant ratio with torsion.
5. Define involute \& evolutes.
6. What are the first \& second fundamental forms?
7. Discuss orthogonal trajectories with suitable examples.
8. Find the equation of edge of regression of the envelope.
