Total Pages : 3

Roll No.

MT-504

Differential Geometry and Tensor-I

MA/MSC Mathematics (MAMT/MSCMT)

1st Semester Examination, 2022 (Dec.)

Time : 2 Hours]

[Max. Marks : 35

Note : This paper is of Thirty Five (35) marks divided into two (02) Sections A and B. Attempt the questions contained in these sections according to the detailed instructions given therein.

SECTION-A (Long Answer Type Questions)

- **Note :** Section 'A' contains Five (05) long answer type questions of Nine and Half (9½) marks each. Learners are required to answer any Two (02) questions only. (2×9½=19)
- 1. Show that the tangent at any point of the curve whose equations are x = 3u, $y = 3u^2$, $z = 2u^3$, makes a constant angle with the line y = z x = o

S-71/MT-504

- 2. State and prove Serret-Frenet formulae.
- 3. Find the plane that has three point contact at the origin with the curve $x = u^4 1$, $y = u^3 1$, $z = u^2 1$.
- 4. Find the radii of curvature and torsion of the helix $x = a \cos u$, $y = a \sin u$, $z = au \tan \alpha$.
- 5. State & Prove Meunier's theorem.

SECTION-B (Short Answer Type Questions)

- **Note :** Section 'B' contains Eight (08) short answer type questions of Four (04) marks each. Learners are required to answer any Four (04) questions only. (4×4=16)
- 1. Find the length of one complete turn of the circular helix $\vec{r} = a \cos ui + a \sin uj + cuk; -\infty < u < \infty.$
- **2.** Define osculating plane, normal plane & rectifying plane of a space curve.
- 3. Prove that the necessary & sufficient condition for the curve to be a plane curve is $[r^I, r^{II}, r^{III}] = 0$
- **4.** Prove that for all helices, curvature bears a constant ratio with torsion.
- S-71/MT-504 [2]

- **5.** Define involute & evolutes.
- 6. What are the first & second fundamental forms?
- 7. Discuss orthogonal trajectories with suitable examples.
- 8. Find the equation of edge of regression of the envelope.