S-70

Total Pages : 3
Roll No.

MT-503

Differential Equation and Calculus of Variation

MA/MSC Mathematics (MAMT/MSCMT)
1st Semester Examination, 2022 (Dec.)

Time : 2 Hours]
[Max. Marks : 35

Note : This paper is of Thirty Five (35) marks divided into two (02) Sections A and B. Attempt the questions contained in these sections according to the detailed instructions given therein.

SECTION-A

(Long Answer Type Questions)

Note : Section 'A' contains Five (05) long answer type questions of Nine and Half ($91 / 2$) marks each. Learners are required to answer any Two (02) questions only. ($2 \times 91 / 2=19$)

1. Solve $r+(a+b) s+a b t=x y$ by Monge's method.
2. Use the method of separation of variables to solve the PDE.

$$
\frac{\partial^{2} u}{\partial x^{2}}-2 \frac{\partial u}{\partial x}+\frac{\partial u}{\partial y}=0 .
$$

3. Reduce the equation $(n-1)^{2} \frac{\partial^{2} u}{\partial x^{2}}-y^{2 n} \frac{\partial^{2} z}{\partial y^{2}}=n y^{2 n-1} \frac{\partial z}{\partial y}$ to canonical form and find its general solution.
4. Find the eigenvalues and eigenfunction for the boundary value problem $y^{\prime \prime}-3 y^{\prime}+2(1+\lambda) y=0 ; y(0)=0, y(1)=0$.
5. Find the extremal of the functional

$$
I=\int_{0}^{1}\left(1+y^{\prime \prime 2}\right) d x
$$

under the conditions $y(0)=0, y^{\prime}(0)=1, y(1)=1, y^{\prime}(1)=1$.

SECTION-B

(Short Answer Type Questions)

Note : Section 'B' contains Eight (08) short answer type questions of Four (04) marks each. Learners are required to answer any Four (04) questions only. $\quad(4 \times 4=16)$

1. Show that there are two values of the constant for which $\frac{k}{x}$ is an integral of $x^{2}\left(y_{1}+y^{2}\right)=2$, and hence obtain the general solution.
2. Solve $y z(y+z) d x+z x(x+z) d y-x y(x+y) d z=0$
3. Find the characteristics of $y^{2} r-x^{2} t=0$.
4. Solve $2 r+(p+x) \mathrm{S}+y t+y\left(r t-s^{2}\right)+q=0$.
5. Test for extremum of the functional

$$
\mathrm{F}(y(x))=\int_{0}^{1}\left[x^{2} y^{2}+x^{2} y^{\prime}\right] d x, y(0)=0, y(1)=1
$$

6. Solve $-t=\frac{x}{y^{2}}$.
7. Show that the equation $\frac{\partial^{2} z}{\partial x^{2}}+2 x \frac{\partial^{2} z}{\partial x \partial y}+(1-y)^{2} \frac{\partial^{2} z}{\partial y^{2}}=0$ is elliptic for values of x and in the region $x^{2}+y^{2}<1$, parabolic on the boundary and hyperbolic outside this region.
8. Prove that eigenvalues of Sturm-Liouville system are real.
