Total Pages : 3

Roll No.

MT-502

Real Analysis

MA/MSC Mathematics (MAMT/MSCMT)

1st Semester Examination, 2022 (Dec.)

Time : 2 Hours]

[Max. Marks : 35

Note : This paper is of Thirty Five (35) marks divided into two (02) Sections A and B. Attempt the questions contained in these sections according to the detailed instructions given therein.

SECTION-A (Long Answer Type Questions)

- Note : Section 'A' contains Five (05) long answer type questions of Nine and Half (9½) marks each. Learners are required to answer any Two (02) questions only. (2×9½=19)
- 1. If E_n is monotonic non-increasing sequence of measurable sets, then show that the limit $E = \bigcap_{k=1}^{\infty} E_k$ is a measurable set.

[P.T.O.

- 2. Show that not every measurable set is a Borel set.
- 3. State and prove Egoroff's theorem.
- 4. Let f_n be a sequence of measurable functions on a measurable set E. Let

$$|f_n(x)| < \mathbf{M} \ \forall n \in \mathbb{N} \text{ and } \forall x \in \mathbf{E},$$

where M is a fixed positive constant. If $f(x) = \lim_{n \to \infty} f_n(x)$ for each $x \in E$, then show that

$$\lim_{n\to\infty}\int_E f_n(x)dx = \int_E f(x)dx.$$

5. Show that the normed spaces L^p , $1 \le p \le \infty$, are complete.

SECTION-B

(Short Answer Type Questions)

- **Note :** Section 'B' contains Eight (08) short answer type questions of Four (04) marks each. Learners are required to answer any Four (04) questions only. (4×4=16)
- 1. Let E₁, E₂, ... be a sequence of pairwise disjoint subsets of real numbers. Show that

 $\mu_*({\rm E}_1+{\rm E}_2+...)\geq \mu_*({\rm E}_1)+\mu_*({\rm E}_2)+...,$

where $\mu_*(E)$ denotes the Lebesgue inner measure of E.

S-69/MT-502

- **2.** Is the set of all irrational numbers in the interval [0,1] measurable? If not, give a justification. If yes, find its measure with a proper justification.
- **3.** Show that the characteristic function of a set E is measurable if and only if E is a measurable set.
- 4. Show that a step function is a measurable function.
- **5.** Give an example of a function which is not integrable in the sense of Lebesgue.
- 6. Show that a set E is outer measurable if and only if its complement E^c is outer measurable.
- 7. Show that the function $f: [0,1] \to \mathbb{R}$ given by

$$f(x) = \begin{cases} \frac{1}{x}; & 0 < x < 1\\ 5; & x = 0\\ 7; & x = 1 \end{cases}$$

is a measurable function.

8. If $f \in L^p$, and $g \le f$, then show that $g \in L^p$.

S-69/MT-502