S-68

Total Pages : 3
Roll No.

MT-501

Advanced Algebra-I

MA/MSC Mathematics (MAMTVMSCMT)
1st Semester Examination, 2022 (Dec.)

Time : 2 Hours]
[Max. Marks : 35

Note : This paper is of Thirty Five (35) marks divided into two (02) Sections A and B. Attempt the questions contained in these sections according to the detailed instructions given therein.

SECTION-A

(Long Answer Type Questions)

Note : Section 'A' contains Five (05) long answer type questions of Nine and Half ($91 / 2$) marks each. Learners are required to answer any Two (02) questions only. ($2 \times 91 / 2=19$)

1. Let G_{1} and G_{2} is a group. Prove that $\mathrm{G}_{1} \times \mathrm{G}_{2}$ is a group.
2. Let R be a ring and M be an M -module. Then
(a) $r o=0$ for all $r \in \mathrm{R}$.
(b) $\mathrm{o} m=0$ for all $\mathrm{m} \in \mathrm{M}$.
(c) $\mathrm{R}(m-n)=r m-r n$ for all $r \in \mathrm{R} m, n \in \mathrm{M}$.
3. Let $t: \mathrm{V} \rightarrow \mathrm{V}^{\prime}$ be a linear transformation. Then
(a) $\operatorname{Ker}(\mathrm{t})$ is a vector subspace of V .
(b) $\operatorname{lm}(t)$ is a vector subspace of V^{\prime}.
4. If K is a finite field extension of a field F and L is a finite field extension of K, then L is a finite field extension of F and $[\mathrm{L}: \mathrm{F}]=[\mathrm{L}: \mathrm{K}][\mathrm{K}: \mathrm{F}]$.
5. Prove that the ring of Gaussian integer is a Euclidean ring.

SECTION-B
 (Short Answer Type Questions)

Note : Section 'B' contains Eight (08) short answer type questions of Four (04) marks each. Learners are required to answer any Four (04) questions only. $\quad(4 \times 4=16)$

1. Define (a) Group Homomorphism (b) Kernal of homomorphism.
2. Prove that any two conjugate classes of a group are either disjoint or identical.
3. Prove that every finite abelian group is solvable.
4. Define (a) Divisor (b) Prime element.
5. Prove that every ring of polynomial $\mathrm{F}[x]$ over a field is a Euclidean ring.
6. Show that the following mapping is linear $t: \mathrm{R}^{3} \rightarrow \mathrm{R}^{2}$ given by $t(x, y, z)=(z, x+y)$ for all $(x, y, z) \in$ R^{3}.
7. Let Q be the field of rational numbers, then show that

$$
\mathrm{Q}(\sqrt{2}, \sqrt{3})=\mathrm{Q}(\sqrt{2}+\sqrt{3})
$$

8. Let G_{1} and G_{2} be groups, then $\mathrm{G}_{1} \times \mathrm{G}_{2} \cong \mathrm{G}_{2} \times \mathrm{G}_{1}$.
