S-491

Total Pages : 3

Roll No.

MSCPH-503

Quantum Mechanics

M.Sc. Physics (MSCPH)

1st Semester Examination, 2022 (Dec.)

Time : 2 Hours]

Max. Marks : 70

Note : This paper is of Seventy (70) marks divided into two (02) Sections A and B. Attempt the questions contained in these sections according to the detailed instructions given therein.

SECTION-A (Long Answer Type Questions)

Note : Section 'A' contains Five (05) long answer type questions of Nineteen (19) marks each. Learners are required to answer any Two (02) questions only.

 $(2 \times 19 = 38)$

1. Show that three Pauli matrices together with 2×2 unit matrix form the complete basis of an algebra.

S-491 / MSCPH-503

[P.T.O.

- 2. Obtain the matrix elements of the matrices representing the operators $\hat{J}_+, \hat{J}_-, \hat{J}_x$ and \hat{J}_y in space spanned by the simultaneous eigen vectors $|jm_j\rangle$ of the operators \hat{J}_z^2 and \hat{J}_z .
- 3. What do you understand by scattering cross-section? Deduce an expression for the scattering cross-section of particles by a spherically symmetric potential. Explain the significance of the phase-shift terms appearing in the formula.
- **4.** What do you mean by Zeeman effect? Explain the theory of first and second order Zeeman effect.
- **5.** Discuss the Schrodinger, the Heisenberg and the Interaction representations of wave function for describing the dynamical behaviour of a system.

SECTION-B

(Short Answer Type Questions)

- **Note :** Section 'B' contains Eight (08) short answer type questions of Eight (08) marks each. Learners are required to answer any Four (04) questions only. (4×8=32)
- 1. Explain the principle of matrix mechanics. Show that the eigen values of a diagonal matrix are its diagonal elements and how do you diagonalize a matrix.

S-491/MSCPH-503 [2]

- 2. Describe the basic features of operator formalism in quantum mechanics. Prove that two commutating operators have simultaneous eigen functions.
- 3. Calculate the mean value of *r* for an electron in the ground state of hydrogen atom.
- **4.** Find the maximum Compton wave shift corresponding to a collision between a photon and a proton at rest.
- 5. Find the values of $[\sigma^2, \sigma_x]$; $[\sigma^2, \sigma_y]$ and $[\sigma^2, \sigma_z]$, where σ_x , σ_y , σ_z are Pauli matrices.
- 6. Find the eigen functions for addition of two angular momenta to give the zero total angular momentum.
- 7. Give the theory of Born approximation in scattering.
- **8.** Describe the general theory of one-dimensional harmonic oscillator.