S-489

Total Pages : 3
Roll No.

MSCPH-501

Mathematical Physics

M.Sc. Physics (MSCPH)

1st Semester Examination, 2022 (Dec.)

Time : 2 Hours]

Max. Marks : 70

Note : This paper is of Seventy (70) marks divided into two (02) Sections A and B. Attempt the questions contained in these sections according to the detailed instructions given therein.

SECTION-A
 (Long Answer Type Questions)

Note : Section 'A' contains Five (05) long answer type questions of Nineteen (19) marks each. Learners are required to answer any Two (02) questions only.
$(2 \times 19=38)$

1. Establish the relation curl curl $\vec{f}=\vec{\nabla} \operatorname{div} \vec{f}-\nabla^{2} \vec{f}$.
2. (a) Show that any tensor can be expressed as a sum of two tensors, one of which is symmetric and the other Skew-symmetric in a pair of covariant and contravarient indices.
(b) Determine the eigen values and eigen vectors of matrix :

$$
A=\left[\begin{array}{lll}
0 & 1 & 0 \tag{10}\\
1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

3. Solve the differential equations :

$$
\begin{equation*}
\frac{d^{2} y}{d x^{2}}+2 \frac{d y}{d x}+2 y=\sin h x \tag{19}
\end{equation*}
$$

4. (a) Find Rodrigue's formula for Legendre polynomials. 9
(b) Obtain any two recurrence relations of Laguerre polynomials.
5. Show that the Laplace transform passess the properties of linearity. Shifting and change of scale. Find the laplace transform of $(1+\sin 2 t)$.

SECTION-B
 (Short Answer Type Questions)

Note : Section 'B' contains Eight (08) short answer type questions of Eight (08) marks each. Learners are required to answer any Four (04) questions only. $\quad(4 \times 8=32)$

1. Find the value of $\operatorname{div} \overrightarrow{\mathrm{V}}$ in terms of curvilinear coordinates.
2. Define covarient and contravarient tensors.
3. Convert Hermite polynomial : $2 \mathrm{H}_{4}(x)+3 \mathrm{H}_{3}(x)-\mathrm{H}_{2}(x)+5 \mathrm{H}_{1}(x)+6 \mathrm{H}_{0}(x)$ into ordinary polynomial.
4. Define Cauchy residues theorem.
5. What do you mean by Fourier transform and inverse Fourier transform?
6. If A is any square matrix show that $\mathrm{A}+\mathrm{A}^{\circ}$ is Hermitian.
7. Show that the Fourier transform of a Gaussian function is also Gaussian in the corresponding fourier space.
8. Find the laplace transform of the function $t . e^{2 t}$.
