S-716

Total Pages : 6
Roll No. -------------

MSCIT-09

Discrete Mathematics
 (MCA/MSCIT)

$3^{\text {RD }}$ Semester, Examination 2022(Dec.)
Time: 2 Hours
Max. Marks: 70

Note: This paper is of Seventy (70) marks divided into two (02) Sections A and B. Attempt the questions contained in these sections according to the detailed instructions given therein.

Section - A

(Long Answer - type questions)
Note: Section 'A' contains Five (05) long-answer-type questions of Nineteen (19) marks each. Learners are required to answer any two (02) questions only.

$$
[2 \times 19=38]
$$

P.T.O.
Q.1. (a) Let R be a relation on a set $\mathrm{X}=\{1,2,3,4\}$ is defined as:
$\mathrm{R}=\left\{(\mathrm{a}, \mathrm{b}): \mathrm{a}, \mathrm{b} \in \mathrm{Z}^{+}\right.$and $\left.\mathrm{a} \leq \mathrm{b}\right\}$.
Prove that R is an equivalence relation and find the equivalence class of 1 .
(b) Define one-one and onto functions. Find the inverse of the function $\mathrm{f}: R \rightarrow R$ defined as
$f(x)=5 x-2$ for all $x \in R$
Q.2. (a) Define logical equivalence. Without constructing truth table, prove that equivalence
$P \rightarrow(Q \rightarrow R) \equiv(P \wedge Q) \rightarrow R$
(b) What do you mean by logical implication?

Prove that implication.
$P \rightarrow Q \Rightarrow P \rightarrow(P \wedge \mathrm{Q})$
Q.3. (a) In how many ways can 3 history, 2 hindi and 4 English books can be arranged in a bookshelf. if
(i) no restriction is given X
(ii) all books of same subjects are together
(iii) Hindi books are together.
(iv) English books are together.
(v) Hindi books are together and English books are together.
(b) Define combination. A bag contain 4 different history books and 6 different English books. In how many ways can 3 books be selected so that there is at least 1 book of each subject?
Q.4. (a) If (G,*) be group, then prove that
(i) the identity element is unique
(ii) the inverse of each element is unique
(b) Define a subgroup. Prove that A non empty subset H of a group G is a subgroup of G If

$$
\begin{equation*}
\alpha \in H, b \in H \Rightarrow a b^{-1} \in H \tag{9}
\end{equation*}
$$

P.T.O.
Q.5. (a) Define spanning tree in a graph. Find the minimal spanning tree using Kruskal's algorithm in the graph given below.

(b) Define Euler and Hamiltonian graphs with the help of suitable examples.
Section - B

(Short-answer-type questions)

Note: Section 'B' contains Eight (08) short-answer-type questions of Eight (08) marks each. Learners are required to answer any Four (04) questions only.

$$
[4 \times 8=32]
$$

Q.1. Define complement of a set and difference of two sets. Also draw their Venn diagrams.
Q.2. Define a partial order relation.

Let $\mathrm{X}=\{2,3,4,6,8,12,24,36\}$ and
$\mathrm{R}=\{(x, y): x \mid y, \forall x, y \in X\}$. Where '|' denotes the relation 'divides'. Draw the Hasse diagram of (R, \mid)
Q.3. Define inverse of a function. Let $f: \mathrm{R} \rightarrow R$ defined as f $=x^{2}+3$. Check whether the inverse of f exists or not? If so, then find the inverse also.
Q.4. Define principal conjunctive normal form (PCNF). Write PCNF of $\mathrm{P} \wedge(\mathrm{P} V \mathrm{Q})$.
Q.5. What do you mean by a well-formed formula? Is the formula $P V Q \rightarrow Q \wedge R$ well-formed formula? If not, explain the reason and then convert it into a wellformed formula.
Q.6. Write the predicates for the following sentences:
(i) All cats are black.
(ii) Some dogs are not white.
Q.7. Define bounded lattice and complemented lattice with the help of suitable examples.
Q.8. Define the following terms with the help of suitable examples:
(i) Bipartite graphs
(ii) Circuit in a graph

