S-782

Total Pages : 5
Roll No. -------------

MCA-E4

Formal Language and Theory of Automata Master of Computer Application (MCA) $4^{\text {th }}$ Semester, Examination 2022(Dec.)

Time: 2 Hours
Max. Marks: 70

Note: This paper is of Seventy (70) marks divided into two (02) Sections A and B. Attempt the questions contained in these sections according to the detailed instructions given therein.

Section - A

(Long Answer - type questions)
Note: Section 'A' contains Five (05) long-answer-type questions of Nineteen (19) marks each. Learners are required to answer any two (02) questions only.

$$
[2 \times 19=38]
$$

Q.1. (a) Let $\sum=\{a, b\}$ and $\mathrm{L}_{1}=\left\{a^{n}: n \geq 0\right\}$ and $\mathrm{L}_{2}=\left\{b^{m:}: m \geq 0\right\}$ be two languages over \sum. Find the following:
(i) $\quad \sum^{*}$
(ii) $\quad \sum^{+}$
(iii) $\mathrm{L}_{1} \cup \mathrm{~L}_{2}$
(iv) $\mathrm{L}_{1} \cap \mathrm{~L}_{2} \quad$ (v) $\quad \mathrm{L}_{1} \mathrm{~L}_{2}$
(b) Define the grammar of formal languages. Write the grammar of the language $\mathrm{L}=\left\{a^{n} b^{n}: n \geq 0\right\}$ over the alphabet $\sum=\{\mathrm{a}, \mathrm{b}\}$.
Q.2. (a) Define deterministic finite automation (DFA). Let $\sum=\{a, b\}$, design a DFA that accepts all the words that start with ab.
(b) Describe pumping lemma for context free languages.
Q.3. (a) Define a regular expression. Let $\sum=\{a, b\}$, write regular expressions for the following languages:
(i) set of all the words starting with a and ending with b .
(ii) set of all the words containing the substring $a b$.
(b) Explain CYK Algorithm.
Q.4. (a) Describe Moore machine. Design a Moore machine that gives a 1 as its output if the input string contains baa as a substring 0 otherwise, so that number of times the substring appears can be counted by counting number of 1's in the output string. Here $\sum=\{a, b\}$ is the input alphabet and $\Pi=\{0,1\}$ is the output alphabet.
(b) Prove that if L is a context-sensitive language, then L is accepted by some linear bounded automaton M .
Q.5. (a) What is DPDA and DCFL? Explain their difference with suitable example.
(b) Describe Chomsky normal form and Greibach normal form.

> P.T.O.

Section - B

(Short-answer-type questions)

Note: Section 'B' contains Eight (08) short-answer-type questions of Eight (08) marks each. Learners are required to answer any Four (04) questions only.

$$
[4 \times 8=32]
$$

Q.1. Define non deterministic finite automaton (NFA). Difference between DFA and NFA.
Q.2. Define regular grammar. Let $\sum=\{a, b\}$, design a DFA corresponding to the regular expression $a b b a *$.
Q.3. Describe Turing machine, its basic model and working.
Q.4. Design a pushdown automaton that accepts the language $\mathrm{L}=\left\{a^{n} b^{n}: n \geq 0\right\}$.
Q.5. Describe recursive and recursively enumerable languages.
Q.6. Explain Chomsky hierarchy.
Q.7. Explain Post's Correspondence Problem (PCP).
Q.8. Prove that if L_{1} and L_{2} are context free languages, then $\mathrm{L}_{1} \cup \mathrm{~L}_{2}$ is also a context free language.

