S-1058

Total Pages : 4
Roll No.

МАМТ-10

Mathematical Programming

MA/M.Sc. Mathematics (MAMT/MSCMT)
2nd Year Examination, 2022 (Dec.)

Time : 2 Hours]

Max. Marks : 70
Note : This paper is of Seventy (70) marks divided into two (02) Sections A and B. Attempt the questions contained in these sections according to the detailed instructions given therein.

SECTION-A
 (Long Answer Type Questions)

Note : Section 'A' contains Five (05) long answer type questions of Nineteen (19) marks each. Learners are required to answer any Two (02) questions only.
($2 \times 19=38$)

1. Solve the following LPP by the revised simplex method:

Maximize $z=2 x_{1}+x_{2}$
s.t.

$$
\begin{aligned}
& 3 x_{1}+4 x_{2} \leq 6 \\
& 6 x_{1}+x_{2} \leq 3 \\
& x_{1}, x_{2} \geq 0 .
\end{aligned}
$$

2. Find the optimum integer solution to I.P.P

Maximize $\quad z=x_{1}+x_{2}$
s.t.

$$
\begin{aligned}
& 2 x_{1}+5 x_{2} \leq 16 \\
& 6 x_{1}+5 x_{2} \leq 30 \\
& x_{1}, x_{2} \geq 0
\end{aligned}
$$

and x_{1}, x_{2} are integers.
3. (a) Write the following quadratic form in matrix form
(i) $\mathrm{Q}(x)=3 x_{1}^{2}+5 x_{2}^{2}-8 x_{1} x_{2}$
(ii) $\mathrm{Q}(x)=x_{1}^{2}+2 x_{2}^{2}-7 x_{3}^{2}-4 x_{1} x_{2}+6 x_{1} x_{3}-5 x_{2} x_{3}$
(b) Determine the sign of definiteness for each of the following matrices.
(i) $\left[\begin{array}{lll}3 & 1 & 2 \\ 1 & 5 & 0 \\ 2 & 0 & 2\end{array}\right]$
(ii) $\left[\begin{array}{ccc}2 & 1 & 2 \\ 1 & -3 & 0 \\ 2 & 0 & -5\end{array}\right]$
(iii) $\left[\begin{array}{lll}1 & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 3\end{array}\right]$
4. Solve the following quadratic programming problem using Wolfe's Method
Min. $\quad f\left(x_{1}, x_{2}\right)=2 x_{1}+x_{2}-x_{1}^{2}$
subject to $2 x_{1}+3 x_{2} \leq 6$

$$
\begin{aligned}
& 2 x_{1}+x_{2} \leq 4 \\
& x_{1}, x_{2} \geq 0 .
\end{aligned}
$$

5. Use Bellman's optimality principle to divide a positive quantity ' b ' into n parts in such a way that their product is maximum.

SECTION-B
 (Short Answer Type Questions)

Note : Section 'B' contains Eight (08) short answer type questions of Eight (08) marks each. Learners are required to answer any Four (04) questions only. $\quad(4 \times 8=32)$

1. Prove that a hyperplane is a closed set.
2. Show that $f(x)=2 x_{1}^{2}+x_{2}^{2}$ is convex function over R^{2}.
3. Solve the following I.P.P by branch and bound technique.

Max $z=x_{1}+x_{2}$
s.t. $\quad 3 x_{1}+2 x_{2} \leq 12$
$x_{2} \leq 2$
$x_{1}, x_{2} \geq 0$ and integers.
4. Use method of Lagrangian multipliers to solve the following nonlinear programming problem :
Optimize $f(\mathrm{X})=2 x_{1}^{2}+x_{2}^{2}+3 x_{3}^{2}+10 x_{1}+8 x_{2}+6 x_{3}-100$
s.t $\quad x_{1}+x_{2}+x_{3}=20$;
and $\quad x_{1}, x_{2}, x_{3} \geq 0$
Does the solution maximize or minimize the objective function?
5. Write the Kuhn-Tucker necessary and sufficient conditions for the following nonlinear programming problem to have on optional solution.
Min. $f\left(x_{1}, x_{2}\right)=x_{1}^{2}-2 x_{1}-x_{2}$
s.t. $\quad 2 x_{1}+3 x_{2} \leq 6$
$2 x_{1}+x_{2} \leq 4$
$x_{1}+x_{2} \geq 0$
6. Prove that the set of all optimum solutions (global maximum) of the general convex programming problem is a convex set.
7. Define :
(a) Stage.
(b) Dynamic Programming.
(c) Bellman's Principle of Optimality.
(d) Transition Function.
8. Obtain the necessary conditions for the optimum solution of the following non-linear programming problem:
Min. $\mathrm{Z}=f\left(x_{1}, x_{2}\right)=3 \mathrm{e}^{2 x_{1}+1}+2 \mathrm{e}^{x_{2}+5}$
Subject to the constraints : $x_{1}+x_{2}=7$ and $x_{1}, x_{2} \geq 0$.

