S-1057

Total Pages : 4
Roll No.

MAMT-09

Integral Transforms and Integral Equations

MA/M.Sc. Mathematics (MAMT/MSCMT)
2nd Year Examination, 2022 (Dec.)
Time : 2 Hours]
Max. Marks : 70
Note : This paper is of Seventy (70) marks divided into two (02) Sections A and B. Attempt the questions contained in these sections according to the detailed instructions given therein.

SECTION-A
 (Long Answer Type Questions)

Note : Section 'A' contains Five (05) long answer type questions of Nineteen (19) marks each. Learners are required to answer any Two (02) questions only.
$(2 \times 19=38)$

1. Find the Fourier sine and cosine transform of $f(t)$, if

$$
f(t)= \begin{cases}t, & 0<t<1 \\ 2-t, & 1<t<2 \\ 0 . & t>2\end{cases}
$$

2. Prove that the characteristic numbers (eigen values) of a symmetric kernel are real.
3. Find the eigenvalues and there corresponding eigenfunction of the homogeneous integral equation

$$
g(x)=\lambda \int_{0}^{\pi}\left[\cos ^{2} x \cos 2 t+\cos 3 x \cos ^{3} t\right] g(t) d t
$$

4. Evaluate the Laplace transform of the following functions:
(a) $\sin a t-a t \cos a t+\frac{\sin t}{t}$
(b) $\sin \sqrt{t}$
(c) $\frac{\cos \sqrt{t}}{\sqrt{t}}$
5. Let $\mathrm{F}_{v}(p)$ and $\mathrm{F}_{v}(p)$ be the Hankel transform of order v of $f(x)$ and $f^{\prime}(x)=\frac{d f}{d x}$ respectively. Then $\mathrm{H}_{v}\left\{f^{\prime}(x) ; p\right\}=\mathrm{F}_{v}^{\prime}(p)$

$$
=-\frac{p}{2 v}\left\{(v+1) \mathrm{F}_{v-1}(p)-(v-1) \mathrm{F}_{v+1}(p)\right\}
$$

SECTION-B

(Short Answer Type Questions)

Note : Section 'B' contains Eight (08) short answer type questions of Eight (08) marks each. Learners are required to answer any Four (04) questions only. $\quad(4 \times 8=32)$

1. Find the Laplace transform of $e^{-1}(3 \sin h 2 t-5 \cosh 2 t)$.
2. Find the inverse Laplace transform of

$$
\frac{p}{\left(p^{4}+4 a^{4}\right)}
$$

3. Solve
$\left(\mathrm{D}^{2}+\mathrm{l}\right) y=t \cos 2 t, y=0, \frac{d y}{d t}=0$, when $t=0$.
4. Find the solution of
$\frac{\partial u}{\partial t}=3 \frac{\partial^{2} u}{\partial x^{2}}$, given that $u_{x}(0, \mathrm{t})=0, u\left(\frac{\pi}{2}, t\right)=0$ and $u(x, 0)=30 \cos 5 x$.
5. Prove that if n is a positive integer,

$$
M\left[\left(x \frac{d}{d x}\right)^{n} f(x) ; p\right]=(-1)^{n} p^{n} \mathrm{~F}(p),
$$

where $\mathrm{M}\{f(x) ; p\}=\mathrm{F}(p)$.
6. Find the Hankel transform of $x^{v} e^{-a x}$, taking $x \mathrm{~J}_{v}(p x)$ as the kernel.
7. Show that the function $g(x)=1$ is a solution of the Fredholm integral equation $g(x)+\int_{0}^{1} x\left(e^{x t}-1\right) g(t) d t=e^{x}-x$.
8. Find the resolvent kernel of the integral equation

$$
g(x)=e^{x^{2}}+2 x+2 \int_{0}^{x} e^{x^{2}-t^{2}} g(t) d t .
$$

