Total Pages : 4

Roll No.

MAMT-08

Numerical Analysis

MA/M.Sc. Mathematics (MAMT/MSCMT)

2nd Year Examination, 2022 (Dec.)

Time : 2 Hours]

Max. Marks : 70

Note : This paper is of Seventy (70) marks divided into two (02) Sections A and B. Attempt the questions contained in these sections according to the detailed instructions given therein.

SECTION-A (Long Answer Type Questions)

Note : Section 'A' contains Five (05) long answer type questions of Nineteen (19) marks each. Learners are required to answer any Two (02) questions only.

(2×19=38)

1. Find a real root of the equation

 $3x - \sqrt{1 + \sin x} = 0$

Using Iteration method.

S-1056/MAMT-08

[P.T.O.

2. Using Jacobi's method to find all the eigenvalues and eigenvectors of the following matrix A (perform three iterations)

$$\mathbf{A} = \begin{bmatrix} 1 & 1 & 0.5 \\ 1 & 1 & 0.25 \\ 0.5 & 0.25 & 2 \end{bmatrix}$$

3. Compute y(1.4), using fourth order Runge-Kutta method, given that

$$\frac{dy}{dt} = \frac{t}{y}; \ y(1) = 2$$

Perform two iteration and also verified the numerical solution with analytical solution.

4. Use Adams-Mouitan predictor corrector formulae to compute y(0.4), given that

$$\frac{dy}{dt} = ty; = y(0) = 1, y(0.1) = 1.01, y(0.2) =$$

1.022, y(0.3) = 1.023

Also verify the solution.

- 5. Find the root of the equation $x^3 x 1 = 0$ by Muller's method (Perform three iteration). Take -1, 0.5 and 1 as initial approximations.
- S-1056/MAMT-08 [2]

SECTION-B

(Short Answer Type Questions)

- **Note :** Section 'B' contains Eight (08) short answer type questions of Eight (08) marks each. Learners are required to answer any Four (04) questions only. (4×8=32)
- 1. Find the root of the equation

$$x^2 - 5x + 2 = 0$$

Perform three iteration and correct to four decimal places by Newton-Raphson method.

- 2. Find the root of $\sqrt{13}$ by Chebyshev method perform upto third iteration and six decimal places.
- **3.** Find a root of the equation

 $x^3 - 3x^2 + 3x - 1 = 0$

With multiplicity 2, taking initial approximation as $x_0 = -0.9$

4. Use synthetic division and perform two iterations of the Birge-Vieta method to find the smallest positive root of the equation

 $2x^3 - 5x + 1 = 0$

take initial approximation as 0.5

- 5. Solve the system of equations by LU factorization method 2x + 3y + z = 9 x + 2y + 3z = 63x + y + 2z = 8
- 6. Fit a straight line to the given data :

x	-l	0	1	2	3	4	5	6
y	10	9	7	5	4	3	0	-1

Also find the value of *y* at x = 3.5.

7. Use Picard's method to compute y(t) given that

$$\frac{dy}{dt} = \frac{e^{-1}}{y}; \ y(0) = 2.$$

8. Solve the BVP

$$\frac{d^2 y}{dx^2} = xy$$

y(0) + y'(0) = 1, y(1) = 1
With step size $h = \frac{1}{3}$.

S-1056/MAMT-08