S-1056

Total Pages : 4
Roll No.

МАМТ-08

Numerical Analysis

MA/M.Sc. Mathematics (MAMT/MSCMT)
2nd Year Examination, 2022 (Dec.)
Time : 2 Hours]
Max. Marks : 70

Note : This paper is of Seventy (70) marks divided into two (02) Sections A and B. Attempt the questions contained in these sections according to the detailed instructions given therein.

SECTION-A
 (Long Answer Type Questions)

Note : Section 'A' contains Five (05) long answer type questions of Nineteen (19) marks each. Learners are required to answer any Two (02) questions only.
($2 \times 19=38$)

1. Find a real root of the equation
$3 x-\sqrt{1+\sin x}=0$
Using Iteration method.
2. Using Jacobi's method to find all the eigenvalues and eigenvectors of the following matrix A (perform three iterations)

$$
\mathrm{A}=\left[\begin{array}{ccc}
1 & 1 & 0.5 \\
1 & 1 & 0.25 \\
0.5 & 0.25 & 2
\end{array}\right]
$$

3. Compute $y(1.4)$, using fourth order Runge-Kutta method, given that
$\frac{d y}{d t}=\frac{t}{y} ; y(1)=2$
Perform two iteration and also verified the numerical solution with analytical solution.
4. Use Adams-Mouitan predictor corrector formulae to compute $y(0.4)$, given that

$$
\begin{aligned}
& \frac{d y}{d t}=t y ;=y(0)=1, y(0.1)=1.01, y(0.2)= \\
& 1.022, y(0.3)=1.023
\end{aligned}
$$

Also verify the solution.
5. Find the root of the equation $x^{3}-x-1=0$ by Muller's method (Perform three iteration). Take $-1,0.5$ and 1 as initial approximations.

SECTION-B

(Short Answer Type Questions)

Note : Section 'B' contains Eight (08) short answer type questions of Eight (08) marks each. Learners are required to answer any Four (04) questions only. $\quad(4 \times 8=32)$

1. Find the root of the equation

$$
x^{2}-5 x+2=0
$$

Perform three iteration and correct to four decimal places by Newton-Raphson method.
2. Find the root of $\sqrt{13}$ by Chebyshev method perform upto third iteration and six decimal places.
3. Find a root of the equation
$x^{3}-3 x^{2}+3 x-1=0$
With multiplicity 2 , taking initial approximation as $x_{0}=-0.9$
4. Use synthetic division and perform two iterations of the Birge-Vieta method to find the smallest positive root of the equation
$2 x^{3}-5 x+1=0$
take initial approximation as 0.5
5. Solve the system of equations by LU factorization method

$$
\begin{aligned}
& 2 x+3 y+z=9 \\
& x+2 y+3 z=6 \\
& 3 x+y+2 z=8
\end{aligned}
$$

6. Fit a straight line to the given data :

x	-1	0	1	2	3	4	5	6
y	10	9	7	5	4	3	0	-1

Also find the value of y at $x=3.5$.
7. Use Picard's method to compute $y(t)$ given that

$$
\frac{d y}{d t}=\frac{e^{-1}}{y} ; y(0)=2
$$

8. Solve the BVP
$\frac{d^{2} y}{d x^{2}}=x y$
$y(0)+y^{\prime}(0)=1, y(1)=1$
With step size $h=\frac{1}{3}$.
