Total Pages : 4

Roll No.

MAMT-06

Analysis and Advanced Calculus

MA/M.Sc. Mathematics (MAMT/MSCMT)

2nd Year Examination, 2022 (Dec.)

Time : 2 Hours]

Max. Marks : 70

Note : This paper is of Seventy (70) marks divided into two (02) Sections A and B. Attempt the questions contained in these sections according to the detailed instructions given therein.

SECTION-A

(Long Answer Type Questions)

- Note : Section 'A' contains Five (05) long answer type questions of Nineteen (19) marks each. Learners are required to answer any Two (02) questions only. (2×19=38)
- 1. Prove that every normed linear space is a metric space.

S-1054/MAMT-06

[P.T.O.

- 2. State and Prove Hahn Banach theorem.
- 3. (a) Prove that if x and y are any two orthogonal vectors in a Hilbert space H, then $||x + y||^2 = ||x - y||^2 = ||x||^2 + ||y|^2.$
 - (b) If M is a closed linear subspace of a Hilbert space H then prove that $H = M \oplus M^{\perp}$.
- 4. Let *f* be a continuous function on a comapact interval [*a*, *b*] of R into a Banach space X over K. Let F be the function $t \rightarrow \int_{a}^{b} f$ on [*a*, *b*] into X. Let *g* be any differentiable function on [*a*, *b*] into X such that Dg = f. Then F is differentiable, DF = f and $\int_{a}^{b} f = F(b) - F(a) =$ g(b) - g(a).
- 5. If H be a Hilbert space and $\{e_i\}$ be an orthonormal set in H, then prove that the following statement are equivalent
 - (a) $\{e_i\}$ is complete.
 - (b) $x \perp \{e_i\} \Rightarrow x = 0.$
 - (c) If x is an arbitrary vector in H, then $x = \Sigma(x, e_i)e_i$.
 - (d) If x is an arbitrary vector in H, then $||x||^2 = \Sigma |(x, e_i)|^2$.

SECTION-B

(Short Answer Type Questions)

- **Note :** Section 'B' contains Eight (08) short answer type questions of Eight (08) marks each. Learners are required to answer any Four (04) questions only. (4×8=32)
- 1. Every convergent sequence in a normed linear space is a Cauchy sequence.
- 2. Let N and N' be normed linear spaces over the same scalar field and let T be a linear transformation of N into N'. Then T is bounded if it is continuous.
- **3.** State and prove Closed graph theorem.
- **4.** Define with example :
 - (a) Inner product space.
 - (b) Hilbert space.
- 5. If T is an operator on a Hilbert space H, then T is normal iff its real and imaginary parts commute.
- 6. If T is normal operator on a Hilbert space H, then eigenspaces of T are pairwise orthogonal.

- 7. Define :
 - (a) c-Lipshitz property.
 - (b) locally Lipschitz.
 - (c) Regulated function.
- 8. If T be a linear transformation from a normed linear space N into normed space N', then T is continuous either at every point or at no point of N.