Roll No.	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_

PHY-501

Mathematical Physics and Classical Mechanics

M. Sc. PHYSICS (MSCPHY-12/13/16/17) First Year, Examination, 2018

Time: 3 Hours Max. Marks: 80

Note: This paper is of eighty (80) marks containing three (03) Sections A, B and C. Learners are required to attempt the questions contained in these Sections according to the detailed instructions given therein.

Section-A

(Long Answer Type Questions)

Note: Section 'A' contains four (04) long answer type questions of nineteen (19) marks each. Learners are required to answer *two* (02) questions only.

- 1. Describe generating function for Legendre polynomials. Show that :
 - (a) $P_n(1) = 1$
 - (b) $P_n(-x) = (-1)^n P_n(x)$

Find $P_n(-1)$.

2. (a) Show that the Fourier transform of a Gaussian function is also Gaussian in the corresponding Fourier space.

- (b) Show that Laplace transform possesses the properties of linearity, shifting and change of scale.
- 3. (a) Explain the Hamilton-Jacobi equation for Hamilton's characteristic function.
 - (b) Obtain the equation of motion of a dynamical variable F(q, p, t) in terms of the Poisson bracket.
- 4. (a) State and prove addition and subtraction rules governing tensor analysis.
 - (b) Construct a backward difference table using the values given below:

x	y = f(x)
0	2
1	3
2	5
3	6
4	10

Section-B

(Short Answer Type Questions)

Note: Section 'B' contains eight (08) short answer type questions of eight (08) marks each. Learners are required to answer *four* (04) questions only.

1. Show that:

$$\int x J_0^2(x) dx = \frac{1}{2} x^2 \left[J_0^2(x) + J_1^2(x) \right]$$

2. Prove the orthogonality of the Hermite polynomials:

$$\int_{-\infty}^{\infty} e^{-x^2} \mathbf{H}_m(x) \mathbf{H}_n(x) dx = 0, m \neq n$$

3. Find the Fourier transform of the function:

$$f(t) = \begin{cases} 0 & t < 0; \\ e^{-\alpha t} & t \ge 0; \end{cases} \alpha > 0$$

- 4. Find the Laplace transform of the function t. e^{2t} .
- 5. What is a metric tensor and express it as a sum of a symmetric and skew symmetric tensors?
- 6. Derive Lagrange's equations from D'Alembert's principle.
- 7. Derive an expression for the Stirling interpolation formula.
- 8. Explain the basic idea of numerical differentiation. Discuss with *one* suitable example.

Section-C

(Objective Type Questions)

Note: Section 'C' contains ten (10) objective type questions of one (01) mark each.

Choose the correct option:

- 1. If J_0 and J_1 are Bessel function, then $J_1'(x)$ is given by:
 - (a) $-J_0$
 - (b) $J_0(x) \frac{1}{x}J_1(x)$
 - (c) $J_0(x) + \frac{1}{x}J_1(x)$
 - (d) None of these

- 2. If $P_n(x)$ be the Legendre polynomial, then $P'_n(-x)$ is equal to :
 - (a) $(-1)^n P_n(x)$
 - (b) $(-1)^n P'_n(x)$
 - (c) $(-1)^{n+1} P_n'(x)$
 - (d) $P_n''(x)$
- 3. What is Fourier sine transform of $xe^{-x^2/2}$?
 - (a) $\frac{s}{\sqrt{2}}e^{-s^2/2}$
 - (b) se^{-s^2}
 - (c) $se^{-s^2/2}$
 - (d) None of these
- 4. Find the Laplace transform of $F(t) = \begin{cases} t, & 0 < t < 2 \\ 2, & 2 < t \end{cases}$:
 - $(a) \quad \frac{1-e^{-2s}}{s}$
 - (b) $\frac{1 e^{-2s}}{s^3}$
 - (c) $\frac{1-e^{-2s}}{2s^2}$
 - (d) $\frac{1 e^{-2s}}{s^2}$

- 5. If s_{ij} is a symmetric tensor and A_{ij} is antisymmetric tensor, what is the product $A_{ii}s_{ij}$?
 - (a) a tensor of mixed symmetry
 - (b) an antisymmetric tensor
 - (c) a symmetric tensor
 - (d) zero
- 6. For the Ricci tensor R $_{\mu\nu}$, what is the quantity $g^{\mu\nu}$ R $_{\mu\nu}$ in summation convention?
 - (a) tensor of rank four
 - (b) tensor of rank two
 - (c) any scalar
 - (d) scalar curvature
- 7. The Lagrangian of a particle moving in a plane under the influence of a central potential is given by

$$L = \frac{1}{2} m \left(\dot{r}^2 + r^2 \dot{\theta}^2 \right) - V(r).$$
 The generalized

moment corresponding to r and θ are given by :

- (a) m r and $m r^2 \theta$
- (b) m r and $m r \theta$
- (c) $m r^2$ and $m r^2 \theta$
- (d) $m r^2$ and $m r^2 \theta^2$

- 8. The action and angle variable have the dimensions of :
 - (a) force and angle
 - (b) angular momentum and angle
 - (c) energy and angle
 - (d) are dimensionless quantities
- 9. What is the order of error in the expression

$$D^2 = \frac{1}{h^2} \left(\delta^2 - \frac{\delta^4}{12} \right) ?$$

- (a) $O(h^2)$
- (b) $O(h^3)$
- (c) $O(h^4)$
- (d) $O(h^5)$
- 10. What is $(\Delta + \nabla)$?
 - (a) μδ
 - (b) $2\delta\mu$
 - (c) $E + E^{-1}$
 - (d) δ^2