PHY-501

Mathematical Physics and Classical Mechanics

M. Sc. PHYSICS (MSCPHY–12/13/16) First Year, Examination, 2017

Time: 3 Hours Max. Marks: 80

Note: This paper is of **eighty (80)** marks containing **three** (03) Sections A, B and C. Learners are required to attempt the questions contained in these Sections according to the detailed instructions given therein.

Section-A

(Long Answer Type Questions)

Note: Section 'A' contains four (04) long answer type questions of nineteen (19) marks each. Learners are required to answer *two* (02) questions only.

- 1. Describe recurrence formula for $H_n(x)$ and to show that $H_n(x)$ is a solution of Hermite equation. Also find the value of $\int_{-\infty}^{\infty} e^{-x^2} H_2(x) H_3(x) dx$.
- 2. (a) Express the functions:

$$f(x) = \begin{cases} l \text{ when } & |n| \le l \\ 0 & |n| > l \end{cases}$$

as a Fourier integral.

Hence evaluate:

$$\int_0^\infty \frac{\sin \lambda \cos \lambda x}{\lambda} d\lambda$$

(b) Find the Laplace transform of $(1 + \sin 2t)$.

- 3. State and explain the Hamilton's principle of least action. Derive Lagrange's equation from Hamilton's principle. When string of a pendulum is elastic then set up Lagrange's equation for small oscillation where motion is considered to a vertical plane.
- 4. Derive an expression for the Gregory-Newton forward and backward difference interpolation formula.

Section-B

(Short Answer Type Questions)

Note: Section 'B' contains eight (08) short answer type questions of eight (08) marks each. Learners are required to answer *four* (04) questions only.

1. Show that:

$$\frac{d}{dx}$$
 $J_n^2 + J_{n+1}^2 = 2\left(\frac{n}{x}J_n^2 - \frac{n+1}{x}J_{n+1}^2\right)$

- 2. Explain the derivative of two-dimensional wave equation.
- 3. Show that $\frac{\partial A_{\lambda}}{\partial x_{\mu}}$ is not a tensor although A_{λ} is a covariant tensor of rank one.
- 4. Surface as a sphere is a two-dimensional Riemannian space. Find the fundamental metric tensor.
- 5. Discus in brief equation of canonical transformation.
- 6. Explain Hamilton-Jacobi theory and show that the transformation $q = \sqrt{2} \sin Q$ and $p = \sqrt{2} p \cos Q$ is canonical.

7. Derive an expression for the Stirling interpolation formula.

[3]

8. Explain numerical solutions of ordinary differential equation with an example.

Section-C

(Objective Type Questions)

Note: Section 'C' contains ten (10) objective type questions of one (01) mark each. All the questions of this Section are compulsory.

- 1. The integral $\int_0^n P_n(\cos \theta) \sin 2\theta \, d\theta$, n > 1 where $P_n(x)$ is the Legendre polynomial of degree n equal to:
 - (a) 1
 - (b) $\frac{1}{2}$
 - (c) 0
 - (d) 2
- 2. If $J_{n+1}(x) = \frac{2}{x}J_n(x) J_0(x)$, then *n* is:
 - (a) 0
 - (b) 2
 - (c) -1

B-82

(d) None of the above

P. T. O.

- 3. In the Fourier transform the value of $\int_0^\infty e^{-x^2} dx$ is:
 - (a) $\frac{\pi}{2}$
 - (b) $\frac{\sqrt{\pi}}{2}$
 - (c) $\frac{\pi}{\sqrt{2}}$
 - (d) $\sqrt{\frac{\pi}{2}}$
- 4. If $L\{F(t)\} = \overline{f}(s)$, then $L\{t F(t)\}$ is:
 - (a) $\overline{f}'(s)$
 - (b) $-\overline{f}'(s)$
 - (c) $\overline{f}'(s) + \overline{f}(s)$
 - (d) $s\overline{f}'(s) + \overline{f}(s)$
- 5. If A^{μ} and B_{μ} components of contravarient and covariant tensors, what is the nature of the quantity $A^{\mu}B_{\mu}$:?
 - (a) A covariant tensor of rank 2
 - (b) Mixed tensor of rank 1
 - (c) Rank zero scale
 - (d) A mixed tensor of rank 2

6. The Christoffel symbols of the first kind [ij, k] is:

(a)
$$\frac{1}{2} \left[\frac{\partial g_{jk}}{\partial x^i} - \frac{\partial g_{ik}}{\partial x^j} - \frac{\partial g_{ij}}{\partial x^k} \right]$$

(b)
$$\frac{1}{2} \left[\frac{\partial g_{jk}}{\partial x^i} - \frac{\partial g_{ik}}{\partial x^j} + \frac{\partial g_{ij}}{\partial x^k} \right]$$

(c)
$$\frac{1}{2} \left[\frac{\partial g_{jk}}{\partial x^i} + \frac{\partial g_{ik}}{\partial x^j} - \frac{\partial g_{ij}}{\partial x^k} \right]$$

(d)
$$\frac{1}{2} \left[\frac{\partial g_{jk}}{\partial x^i} + \frac{\partial g_{ik}}{\partial x^j} + \frac{\partial g_{ij}}{\partial x^k} \right]$$

7. In the case of canonical transformation:

- (a) The form of the Hamilton equation is preserved.
- (b) The form of Lagrange equations is preserved.
- (c) Hamilton's principle is satisfied in old as well as in the new co-ordinates.
- (d) The form of the Hamilton's equations may or may not be preserved.

8. The equation
$$\frac{d}{dt} \left(\frac{\partial \mathbf{L}}{\partial q_i} \right) - \frac{\partial \mathbf{L}}{\partial q_i} = 0$$
 where $\mathbf{L} = \mathbf{T} - \mathbf{V}$ is:

- (a) Lagrangian equation for conservative system.
- (b) Lagrangian equation for non-conservative system.
- (c) Equation of motion of harmonic oscillator.
- (d) None of these

- 9. For Lagrange's interpolation formula if f(0.5) = 4.56 and f(0.8) = 5.07, the value of f(0.55) is :
 - (a) 4.645
 - (b) 6.326
 - (c) 4.000
 - (d) 5.326
- 10. Runge-Kutta method for second order, first degree linear differential equation is :

(a)
$$\frac{dy}{dx} = f\left(x, y, \frac{d^2y}{dx^2}\right)$$

(b)
$$\frac{d^2y}{dx^2} = f\left(x, y, \frac{dy}{dx}\right)$$

(c)
$$\frac{dy}{dx} = f\left(x, y, \frac{dy}{dx}\right)$$

(d)
$$\frac{d^2y}{dx^2} = f\left(x, y, \frac{dx}{dy}\right)$$