MCA-09/M. Sc. IT-09

Discrete Mathematics

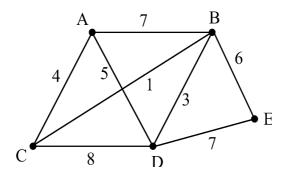
Master of Computer Applications/Master of Science in Information Technology (MCA/M. Sc. IT-11/12/16/17)

Third Semester, Examination, 2017

Time: 3 Hours

Max. Marks : 80

Note: This paper is of eighty (80) marks containing three (03) Sections A, B and C. Attempt the questions contained in these Sections according to the detailed instructions given therein.


Section-A

(Long Answer Type Questions)

Note : Section 'A' contains four (04) long answer type questions of nineteen (19) marks each. Learners are required to answer *two* (02) questions only.

1.	(a)	What is incidence matrix ?	5
	(b)	What is the producture for counting ?	5
	(c)	Prove that the number of vertices of degree graph is always even.	in a 9
2.	(a)	Define and Construct the truth table of following logical operators : (i) Disjunction	the 12
		(ii) Conjunction	
		(iii) Conditional	
		(iv) Bi-conditional	

- (b) Check whether the compound proposition $(P \rightarrow Q) \land (\sim Q) \rightarrow (\sim P)$ is a tautology ? 7
- 3. (a) Write the predicates for the following sentences : 12
 - (i) All students are wise.
 - (ii) Some students know French.
 - (iii) All players are not healthy.
 - (iv) Some cats are not black.
 - (b) Show that the set $\{1, -1, i, -i\}$ is a group with respect to multiplication. 7
- 4. (a) Define the following terms with the help of suitable examples : 12
 - (i) Simple Graph
 - (ii) Multi Graph
 - (iii) Path
 - (iv) Circuit
 - (b) Find the minimal spanning tree using Kruskal's algorithm in the graph shown below. 7

Section-B

(Short Answer Type Questions)

- **Note :** Section 'B' contains eight (08) short answer type questions of eight (8) marks each. Learners are required to answer *four* (04) questions only.
- 1. Draw the Venn diagram of the following sets :
 - $(i) \quad A \cup B \ \cap C$
 - (ii) $A \cap B \cap C$
 - (iii) A B
 - (iv) $(A \cup B)'$
- 2. (i) Define partial order relation with the help of suitable example.
 - (ii) Define the rule of Inference. Explain the different rules of inference.
- 3. Let $X = \{1, 2, 3, 4\}$ and R is a relation on X defined as $xRy \iff x > y$ for all $x, y \in X$:
 - (i) Find the elements of R.
 - (ii) Draw the graph of R.
 - (iii) Give the relation matrix of R.
 - (iv) Check whether R is transitive.
- 4. (i) Define equivalence of propositions.
 - (ii) Define Pigeonhole principle.
- 5. Define Euler path and Hamiltonian path in a graph.
- 6. Prove that :
 - $(i) \qquad A \cup B \quad ' = A' \cap B'$
 - (ii) $A \cap B' = A' \cup B'$

- 7. Define a tree. Prove that there are n 1 edges in tree with *n* vertices.
- 8. Define permutation and combination with the help of suitable examples.

Section-C

(Objective Type Questions)

- **Note :** Section 'C' contains ten (10) objective type questions of one (01) mark each. All the questions of this Section are compulsory.
- 1. Let $X = \{1, 2, 3\}$. Which of the following is true ?
 - $(a) \quad \{2\} \in X$
 - $(b) \quad 1 \, \in \, X$
 - $(c) \quad \phi \ \in X$
 - (d) None of these

2.
$$A = \{1, 2, 3\}$$
 and $B = \{2, 3, 4\}$, then $A \cap B =$

- (a) $\{1, 2, 3\}$
- (b) {2}
- (c) $\{2, 3\}$
- (d) $\{2, 3, 4\}$
- 3. Let X = a, b, c. Which of the following is a transitive relation ?
 - (a) (a,b), (b,c), (a,a)
 - (b) (b, c), (c, b), (c, a)
 - (c) (a,b), (a,a), (b,a)
 - (d) (a, a), (c, a), (c, c), (a, c)

- 4. A relation R on X is said to be 'symmetric' if $\forall x, y \in X$:
 - (a) $xRy \Rightarrow yRx$
 - (b) $xRy \Longrightarrow yRx$ and x = y
 - (c) $xRy \Rightarrow yRx$ and $x \neq y$
 - (d) $xRy \Rightarrow yRx$ and $x \le y$
- 5. Let $X = \{a, b, c\}$ and $Y = \{1, 2, 3\}$. Which of the following relation from X to Y is not a function ?
 - (a) (a, 1), (b, 2), (c, 3)
 - (b) (a, 1), (b, 1), (c, 2)
 - (c) (a, 2), (a, 3), (c, 1)
 - (d) (a, 1), (b, 2), (c, 2)
- 6. The proposition $P \rightarrow Q$ is equivalent to :
 - (a) $P \lor \sim Q$
 - (b) $\sim P \lor Q$
 - (c) $\sim P \wedge Q$
 - (d) $P \wedge \sim Q$
- 7. Which of the following is a tautology ?
 - (a) $\sim P \lor Q$
 - (b) $P \lor \sim Q$
 - (c) ~ P \lor ~ Q
 - (d) $P \lor \sim P$

- 8. How many different words (meaning or meaningless) can be formed by arranging the letters of the word 'MODE' ?
 - (a) 12
 - (b) 16
 - (c) 24
 - (d) 36
- 9. The value ${}^{5}P_{2}$:
 - (a) 60
 - (b) 20
 - (c) 10
 - (d) None of these
- 10. A relation R on X is called partial order relation if it is :
 - (a) Reflexive, Symmetric and Transitive
 - (b) Reflexive, Antisymmetric Transitive
 - (c) Reflexive, Asymmetric and Transitive
 - (d) Reflexive and Transitive

MCA-09/M. Sc. IT-09