Roll No.																						
----------	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--

CHE-501

Inorganic Chemistry

M. Sc. CHEMISTRY (MSCCH-12/13/16)

First Year, Examination, 2017

Time: 3 Hours Max. Marks: 80

Note: This paper is of eighty (80) marks containing three (03) Sections A, B and C. Attempt the questions contained in these Sections according to the detailed instructions given therein.

Section-A

(Long Answer Type Questions)

Note: Section 'A' contains four (04) long answer type questions of nineteen (19) marks each. Learners are required to answer *two* (02) questions only.

- 1. What is the difference between symmetry element and symmetry operation? How many different kinds of symmetry operations are there? What are their symbols?
- 2. State the postulates of crystal field theory (CFT). How are the *d*-electrons distributed between various energy levels in octahedral and tetrahedral fields?
- 3. What is meant by stability of a complex ? Explain how the nature of (i) metal ion and (ii) ligand affect the stability of the complexes.
- 4. What is acid hydrolysis? Discuss the mechanism in the acid hydrolysis of octahedral complexes.

B-22 **P. T. O.**

Section-B

(Short Answer Type Questions)

Note: Section 'B' contains eight (08) short answer type questions of eight (08) marks each. Learners are required to answer *four* (04) questions only.

- 1. Write a note on abelian and non-abelian mathematical rules of group theory.
- 2. Describe the spectrochemical series and its correlation with π -bonding ability of ligands.
- 3. Write selection rules of electronic spectroscopy.
- 4. Predict the structure of carbonyl clusters by Wade's rule.
- 5. Write short notes on the following:
 - (a) Dinitrogen complexes
 - (b) Dioxygen complexes
- 6. Discuss Polarization theory of trans effect.
- 7. Explain with example the inner sphere mechanism of electron transfer reaction.
- 8. Define and discuss the labile and inert metal complexes.

Section-C

(Objective Type Questions)

Note: Section 'C' contains ten (10) objective type questions of one (01) mark each. All the questions of this Section are compulsory.

Choose the right answer:

- 1. Number of C₃ axis in PF₅ molecule is :
 - (a) 2

(b) 3

(c) 4

(d) 5

2.		ch one of the following complex ?	ng me	etal ions will form a							
	(a)	Mn^{2+}	(b)	Cu ²⁺							
	(c)	Fe ²⁺	(d)	Ni ²⁺							
3.		ch one of the followi	ng wo	ould exhibit a strong							
	(a)	CO	(b)	$NO_{\overline{2}}$							
	(c)	Py	(d)	H_2O							
4.	[Ni($(CN)_4]^{2-}$ complex is:									
	(a)	Inert	(b)	Labile							
	(c)	Unstable	(d)	None of these							
5.		complex showing magnetic behaviour is:		lowest value of							
	(a)	$[Cr(CN)_6]^{3-}$	(b)	$[\mathrm{Mn}(\mathrm{CN})_6]^{3-}$							
	(c)	$[\text{Fe}(\text{CN})_6]^{3-}$	(d)	$[\mathrm{Co(CN)}_6]^{3-}$							
6.	Ground state term for d^6 metal ion is:										
	(a)	⁴ F	(b)	^{2}D							
	(c)	⁶ S	(d)	^{3}F							
7.	The complex ion with lowest Δ_0 value is :										
	(a)	$[\text{Co(NH}_3)_6]^{3+}$	(b)	$[\text{Co}\text{F}_{\!6}]^{3-}$							
	(c)	$[Rh(NH_3)_6]^{3+}$	(d)	$[Ir(NH_3)_6]^{3+}$							

- 8. Oxidative-addition reactions of orangometallic compounds follow the mechanism :
 - (a) S_N^2 mechanism
 - (b) Concerted mechanism
 - (c) Free radical
 - (d) All of the three
- 9. Which of the following contains molybdenum iron protein?
 - (a) Anylase
 - (b) Invertase
 - (c) Amylase
 - (d) Nitrogenase
- 10. Which of the following is π -acid ligand?
 - (a) CO
 - (b) NH_3
 - (c) H₂O
 - (d) F-