BCA-01

Computer Fundamental and Introduction to Digital Logic

Bachelor of Computer Application (BCA–11/16/17) First Semester, Examination, 2017

Time: 3 Hours Max. Marks: 80

Note: This paper is of eighty (80) marks containing three (03) Sections A, B and C. Learners are required to attempt the questions contained in these Sections according to the detailed instructions given therein.

Section-A

(Long Answer Type Questions)

Note: Section 'A' contains four (04) long answer type questions of nineteen (19) marks each. Learners are required to answer *two* (02) questions only.

- 1. Answer the following questions:
 - (a) Explain all the generations of computers with technology used. $9\frac{1}{2}$
 - (b) Create a logic diagram for (A + B)'. (C. D)' using NAND Gates only. Also show the truth table for the diagram. $4\frac{1}{2}$
 - (c) Perform the following operations: 5
 - (i) Subtract (AB18476)₁₆ from (CD983762)₁₇.

B-52 **P. T. O.**

- (ii) Convert $(188.04)_{10}$ to its binary equivalent.
- (iii) Convert $(265)_8$ to its binary equivalent.
- (iv) Convert (ABC987)₁₆ to its octal equivalent.
- (v) Calculate 1's complement of (101110110)₂.
- 2. Answer the following questions:
 - (a) Discuss the construction and working of half adder with logic diagram and truth table. 5
 - (b) Discuss the construction and working of full adder with logic diagram and truth table. 5
 - (c) Explain the construction and working of JK flip-flop with diagram. 5
 - (d) Discuss the various types of volatile and non-volatile memories with the help of example. 4
- 3. Answer the following questions:
 - (a) Explain functions and types of RAM and ROM. 6
 - (b) Explain the components and functions of CPU. 5
 - (c) What are input and output devices? Discuss the various types of input and output devices with *three* examples of each.
- 4. Answer the following questions:
 - (a) Explain the following: 2 each
 - (i) Multiplexor
 - (ii) Demultiplexor
 - (iii) Encoder
 - (iv) Decoder
 - (v) Flip-Flop

- (b) Write short notes on the following : $1\frac{1}{2}$ each
 - (i) Cache memory
 - (ii) Shift and Parallel registers
 - (iii) De-Morgan's theorem with example using truth table
 - (iv) Volatile memory and its various types
 - (v) Non-volatile memory and its various types
 - (vi) BCD

Section-B

(Short Answer Type Questions)

Note: Section 'B' contains eight (08) short answer type questions of eight (08) marks each. Learners are required to answer *four* (04) questions only.

- 1. Explain the following laws of Boolean algebra with example of each:
 - (i) Associative law
 - (ii) Commutative law
 - (iii) Identity element
 - (iv) Distributive law
- 2. Simplify the following Boolean functions to a minimum number of literals:
 - (i) x + x'y
 - (ii) x(x' + y)
 - (iii) x' y'z + x' yz + xy'
 - (iv) xy + x'z + yz

B-52 **P. T. O.**

- 3. Obtain the truth table of the following functions and express each function in the sum of minterms and product of maxterms:
 - (i) (xy + z)(y xz)
 - (ii) (A' + B) (B' + C)
 - (iii) y'z + wxy' + wxz' + w'x'z
 - (iv) xy + yz + xz
- 4. Simplify the Boolean function $F(w, x, y, z) = \Sigma (0, 1, 2, 4, 5, 6, 8, 9, 12, 13, 14)$ using Karnaugh Map.
- Discuss Universal Gates. Create NAND gate using NOR Gates only and verify using truth table. Create NOR Gate using NAND Gates only and verify using truth table.
- 6. Explain the working of following gates with the truth table and diagram. Also the discuss the usefulness of these gates:
 - (i) AND
 - (ii) OR
 - (iii) NOT
 - (iv) XOR
 - (v) NAND
 - (vi) NOR
 - (vii) XNOR
 - (viii) Buffer
- 7. Draw the following logic circuit diagram. Explain the output using truth table :

$$A + B + (C. A) + (A. B)' + (A. B. C)$$

8. What is Memory? How is data stored in memory? Explain the various types of primary and secondary memories with example.

Section-C

(Objective Type Questions)

Note: Section 'C' contains ten (10) objective type questions of one (1) mark each. All the questions of this Section are compulsory.

- 1. Which of the following expressions is in the sum-of-products (SOP) form ?
 - (a) (A + B) (C + D)
 - (b) (A)B(CD)
 - (c) AB(CD)
 - (d) AB + CD
- 2. Convert hexadecimal value 16 to decimal:
 - (a) 22_{10}
 - (b) 16₁₀
 - (c) 10_{10}
 - (d) 20_{10}
- 3. One of De-Morgan's theorems states that $\overline{X} + \overline{Y} = \overline{X}.\overline{Y}$. Simply stated, this means that logically there is not difference between:
 - (a) a NOR and an AND gate with inverted inputs
 - (b) a NAND and an OR gate with inverted inputs
 - (c) an AND and a NOR gate with inverted inputs
 - (d) a NOR and a NAND gate with inverted inputs

B-52 **P. T. O.**

		[0]	BCA-UI			
4.	The half adder performs:					
	(a)	Decimal addition operation for 2 decimal	inputs			
	(b)	Binary addition operation for 2 binary inp	outs			
	(c)	Decimal addition operation for 2 binary in	nputs			
	(d)	Binary addition operation for 2 decimal in	nputs			
5.	What are the symbols used to present digits in the binary number system?					
	(a)	0, 1				
	(b)	0, 1, 2				
	(c)	0 through 8				
	(d)	1, 2				
6.	What is the full form of RAM?					
	(a)	Readily Available Memory				
	(b)	Random Access Memory				
	(c)	Roundy Accessing the Memory				
	(d)	Resettable Automatic Memory				
7.	Hov have	w many inputs will a decimal-to-BCD e?	encoder			
	(a)	4				
	(b)					
	(c)	10				
		16				
8.	A 64-bit word consists of					
		4 bytes				
		8 bytes				
	(c)	10 bytes				

(d)

12 bytes

[7] BCA-01

- 9. Why are ROMs called non-volatile memory?
 - (a) They lose memory when power is removed.
 - (b) They do not lost memory when power is removed.
 - (c) They can be stored easily.
 - (d) They cannot be stored easily.

10. A DVD is:

- (a) Optical disk
- (b) Output device
- (c) Solid state storage device
- (d) Hard disk