Semiconductor Devices, Analog and Digital Electronics

BLOCK - II OPERATIONAL AMPLIFIERS

UNIT -10: OPERATIONAL AMPLIFIER - FREQUENCY RESPONSE

Dr. Meenakshi Rana

Department of Physics Uttarakhand Open University, Haldwani

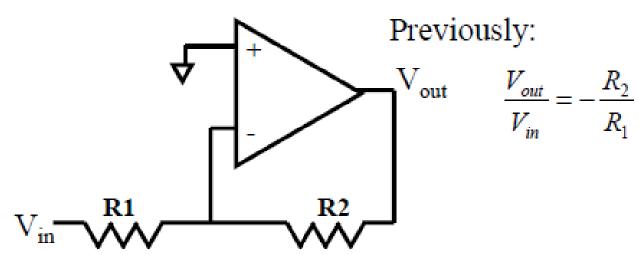
Content

- Ideal op-Amp as Low pass filter
- Ideal op-Amp as high pass filter
- Ideal op-Amp as band pass filter
- Real op-Amp frequency response

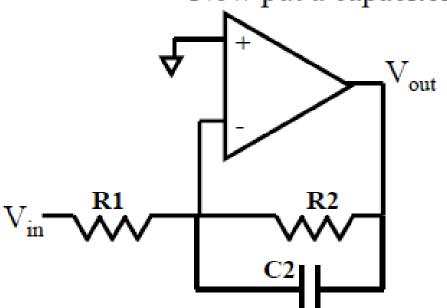
Objective

After studying this unit, you should be able to-

- 1. Define Ideal op-Amp as Low pass filter
- 2. Define Ideal op-Amp as high pass filter
- 3. Define Ideal op-Amp as band pass filter
- 4. Understand the Basic Concept of Real op-Amp frequency response



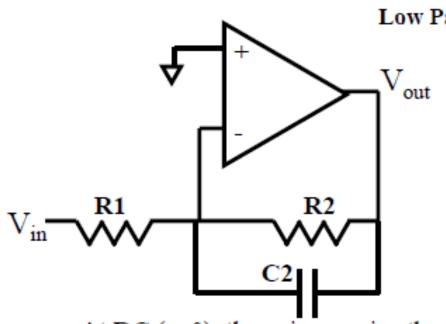
Now put a capacitor in parallel with R2:



If
$$s = j \overline{\omega}$$
,

$$\frac{V_{out}}{V_{in}} = -\frac{R_2 \left\| \frac{1}{C_2 s} \right\|}{R_1}$$

$$\frac{V_{out}}{V_{in}} = -\frac{1}{R_1} \frac{R_2 \frac{1}{C_2 s}}{R_2 + \frac{1}{C_2 s}} = -\frac{R_2}{R_1} \left(\frac{1}{1 + R_2 C_2 s} \right)$$



Low Pass Filter

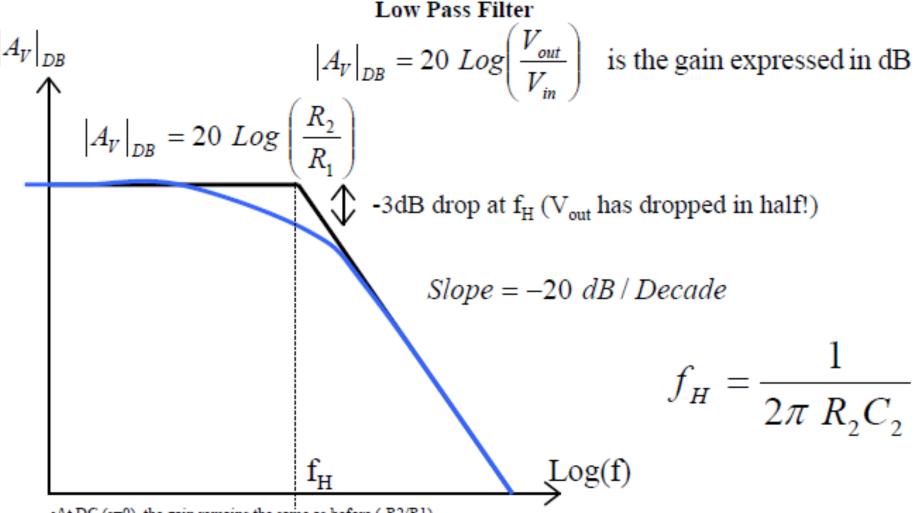
$$\frac{V_{out}}{V_{in}} = -\frac{R_2}{R_1} \left(\frac{1}{1 + R_2 C_2 s} \right)$$

- •At DC (s=0), the gain remains the same as before $(-R_2/R_1)$.
- •At high frequency, R₂C₂s>>1, the gain dies off with increasing frequency,

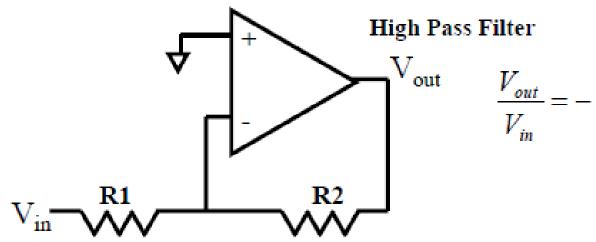
$$\frac{V_{out}}{V_{in}} \approx -\left(\frac{1}{R_1 C_2 s}\right) = -\left(\frac{\frac{1}{C_2 s}}{R_1}\right)$$

$$\frac{1}{R_2 C_2} = 2\pi f_H = \omega_H$$

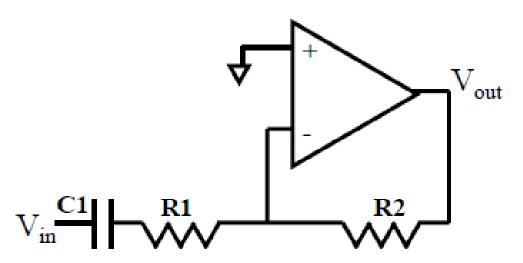
·At high frequencies, more "negative feedback" reduces the overall gain



- •At DC (s=0), the gain remains the same as before (-R2/R1)
- At high frequency, R₂C₂s>>1, the gain dies off with increasing frequency
- Implements a "Low Pass Filter": Lower frequencies are allowed to pass the filter without attenuation. High frequencies are strongly attenuated (do not pass).



$$\frac{V_{out}}{V_{in}} = -\frac{R_2}{R_1}$$



$$\frac{V_{out}}{V_{in}} = -\frac{R_2}{R_1 + \frac{1}{C_1 s}}$$

$$\frac{V_{out}}{V_{in}} = -\frac{R_2 C_1 s}{1 + R_1 C_1 s}$$

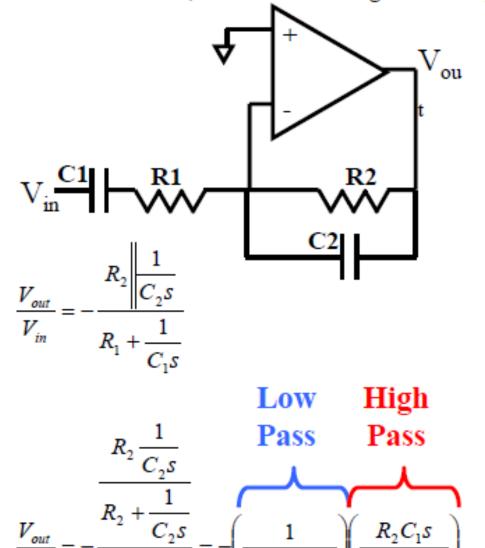
- •At DC (s=0), the gain is zero.
- •At high frequency, $R_1C_1s >> 1$, the gain returns to it's full value, $(-R_2/R_1)$

Ideal Op Amps Used to Control Frequency Response High Pass Filter

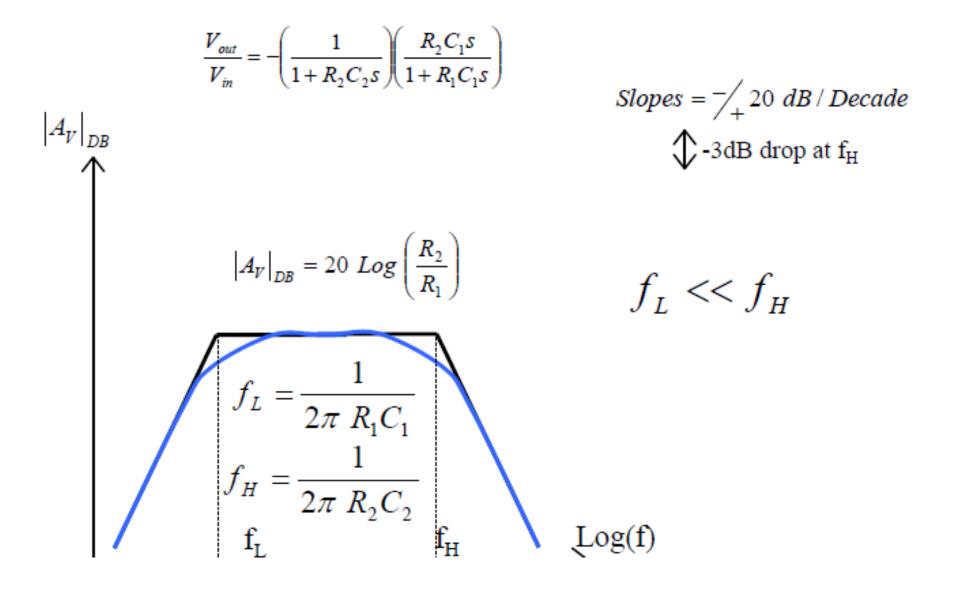


- At high frequency, R₁C₁s>>1, the gain returns to it's full value, (-R₂/R₁)
- •Implements a "High Pass Filter": Higher frequencies are allowed to pass the filter without attenuation. Low frequencies are strongly attenuated (do not pass).

Band Pass Filter (combination of high and low pass filter)



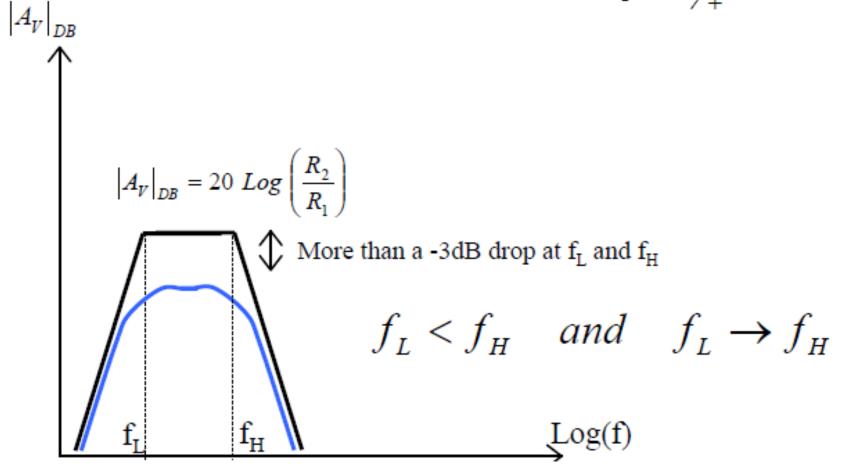
Band Pass Filter (combination of high and low pass filter)



Band Pass Filter (combination of high and low pass filter)

$$\frac{V_{out}}{V_{in}} = -\left(\frac{1}{1 + R_2 C_2 s}\right) \left(\frac{R_2 C_1 s}{1 + R_1 C_1 s}\right)$$

$$Slopes = \frac{1}{20} dB / Decade$$



General Frequency Response of a Circuit

Poles and Zeros

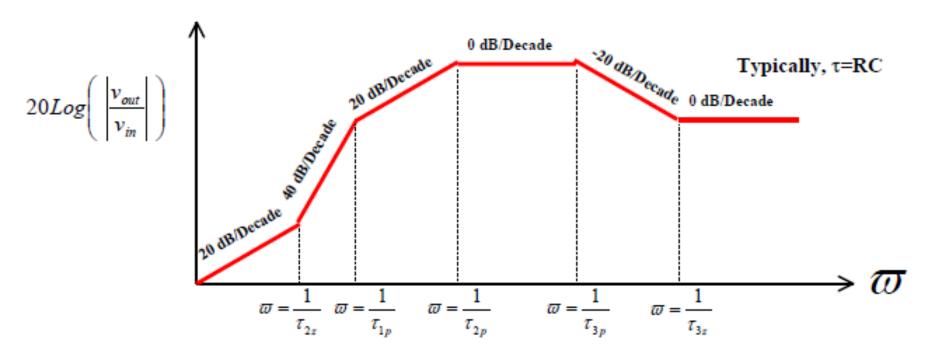
Generally, a circuit's transfer function (frequency dependent gain expression) can be written as the ratio of polynomials:

$$\frac{v_{out}}{v_{in}} = A \frac{(\tau_{1z}s)(1 + \tau_{2z}s)(1 + \tau_{2z}s)...}{(1 + \tau_{1p}s)(1 + \tau_{2p}s)(1 + \tau_{3p}s)...} \qquad \boxed{\frac{v_{out}}{v_{in}}} = A \frac{(\tau_{1z}\varpi)\sqrt{1 - (\tau_{2z}\varpi)^2}\sqrt{1 - (\tau_{3z}\varpi)^2}...}{\sqrt{1 - (\tau_{1p}\varpi)^2}\sqrt{1 - (\tau_{2p}\varpi)^2}\sqrt{1 - (\tau_{3p}\varpi)^2}...}$$

Complex Roots of the numerator polynomial are called "zeros" while complex roots of the denominator polynomial are called "poles"

Each zero causes the transfer function to "break to higher gain" (slope increases by 20 dB/decade)

Each pole causes the transfer function to "break to lower gain" (slope decreases by 20 dB/decade)

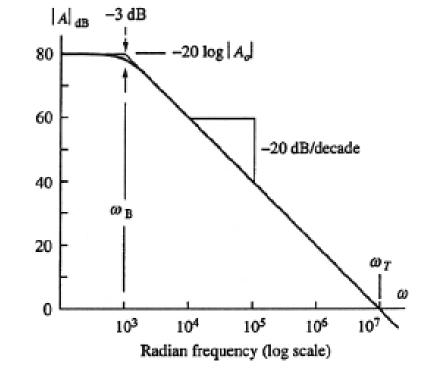


- •To this point we have assumed the open loop gain, $A_{Open\ Loop}$, of the op amp is constant at all frequencies.
- Real Op amps have a frequency dependant open loop gain.

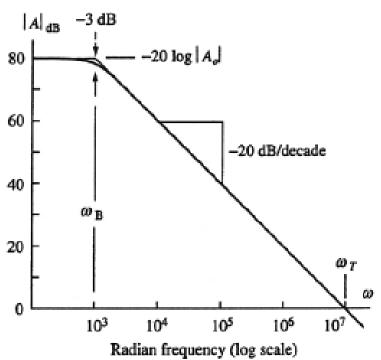
$$\begin{split} A_{OpenLoop}\left(s\right) &= \frac{A_{O}\varpi_{B}}{s+\varpi_{B}} = \frac{\varpi_{T}}{s+\varpi_{B}} \\ where, \\ s &= j\,\varpi \end{split}$$

 $A_0 \equiv \text{Open loop gain at DC}$

 $\varpi_{R} \equiv \text{Open loop bandwidth}$



 $\varpi_T \equiv \text{Unity - gain frequency (frequency where } |A_{OpenLoop}(s)| = 1)$



$$\left|A_{OpenLoop}(j\,\varpi)\right| = \frac{A_{O}\,\varpi_{B}}{\sqrt{\varpi^{2} + \varpi_{B}^{2}}}$$

$$\left| A_{OpenLoop} (j \, \varpi) \right| = \frac{A_O}{\sqrt{1 + \frac{\varpi^2}{\varpi_B^2}}}$$

At Low Frequencies: $|A_{OpenLoop}| = A_O$

At High Frequencies:
$$\left| A_{OpenLoop} \right| \approx \frac{A_O \overline{\omega}_B}{\overline{\omega}} = \frac{\overline{\omega}_T}{\overline{\omega}}$$

For most frequencies of interest, $\omega >> \omega_B$, the product of the gain and frequency is a constant, ω_T

$$f_T = \frac{\overline{\omega}_T}{2\pi} \equiv Gain - Bandwidth \ Product \ (GBW)$$

Previously, we found that the closed loop gain for the Noninverting configuration was (for finite open loop gain):

$$A_{V,ClosedLoop} = \frac{V_{out}}{V_{in}} = \frac{A_{OpenLoop}}{1 + \beta A_{OpenLoop}}$$
, where $\beta = \frac{R_1}{R_1 + R_2}$

Using the frequency dependent open loop gain:

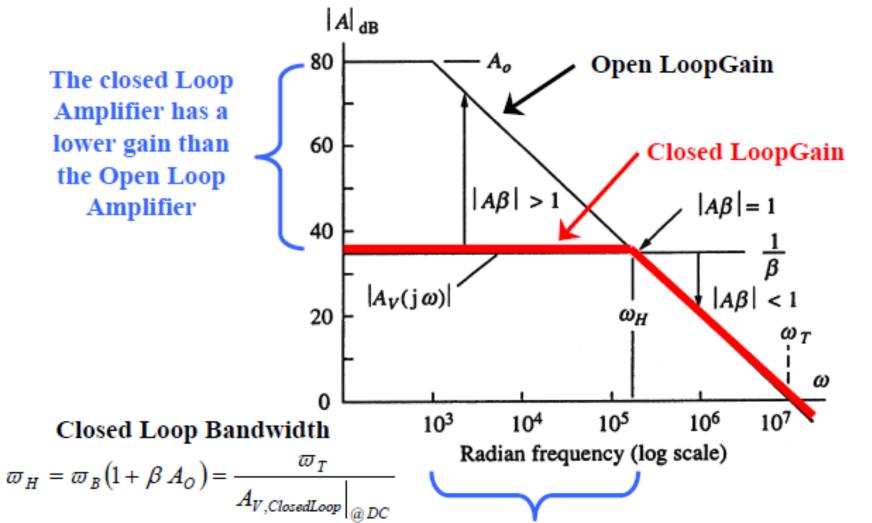
$$A_{V,ClosedLoop} = \frac{V_{out}}{V_{in}} = \frac{A_{OpenLoop}}{1 + \beta A_{OpenLoop}}$$

$$A_{V,ClosedLoop} = \frac{\left(\frac{A_o \varpi_B}{s + \varpi_B}\right)}{1 + \beta \left(\frac{A_o \varpi_B}{s + \varpi_B}\right)} = \frac{A_o \varpi_B}{s + \varpi_B (1 + \beta A_o)} \qquad \begin{array}{c} \text{Low} \\ \text{Pass} \end{array}$$

$$A_{V,ClosedLoop} = \frac{\frac{A_o \varpi_B}{\varpi_B (1 + \beta A_o)}}{\frac{s}{\varpi_B (1 + \beta A_o)} + 1} = \frac{\frac{A_o}{(1 + \beta A_o)}}{\frac{s}{\varpi_B (1 + \beta A_o)} + 1} = \frac{1}{1 + \frac{s}{\varpi_B}} A_{V,ClosedLoop}|_{@DC}$$

where,

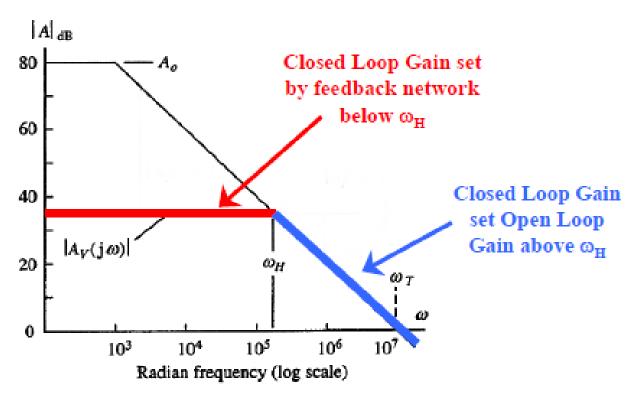
 $\varpi_H \equiv Upper\ Cutoff\ Frequency\ (Closed\ Loop\ Bandwith) = \varpi_B(1 + \beta\,A_O)$



Closed Loop DC Gain

$$A_{V,ClosedLoop} = \frac{A_{OpenLoop}}{1 + \beta A_{Outstand}}$$

The closed Loop Amplifier has a higher bandwidth than the Open Loop Amplifier



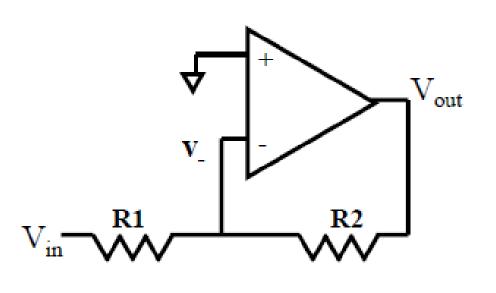
$$(Gain \ x \ Bandwidth)$$
 $Open \ Loop = (Gain \ x \ Bandwidth)$
 $Closed \ Loop$

Example: 741 Op Amp is used as a low pass filter with f_L =10kHz. What is the maximum voltage gain possible for this circuit?

From before, we can write:

$$(200,000 \times 5)$$
_{Open Loop} = $(Gain \times 10,000)$ _{Closed Loop}
 $(Gain)$ _{Closed Loop} = $100 V_V$ Maximum

For the Inverting Configuration:



By sup erposition,

$$V_{\text{out}}$$
 $v_{-} = v_{out} \frac{R_1}{R_1 + R_2} + v_{in} \frac{R_2}{R_1 + R_2}$

$$v_{-} = v_{out}\beta + v_{in}\beta \frac{R_2}{R_1}$$

but,

$$v_{out} = -v_{-}A_{V,OpenLoop}$$

so,

$$-\frac{v_{out}}{A_{V,OpenLoop}} = v_{out}\beta + v_{in}\beta \frac{R_2}{R_1}$$

$$A_{V,ClosedLoop} = \frac{v_{out}}{v_{in}} = \frac{A_{V,OpenLoop} \beta}{1 + A_{V,OpenLoop} \beta} \left(-\frac{R_2}{R_1} \right)$$

Inserting the frequency dependent open loop gain:

$$A_{V,ClosedLoop} = \frac{A_{V,OpenLoop} \beta}{1 + A_{V,OpenLoop} \beta} \left(-\frac{R_2}{R_1} \right)$$

$$A_{V,ClosedLoop} = \frac{\left(\frac{A_o \varpi_B}{s + \varpi_B}\right) \beta}{1 + \left(\frac{A_o \varpi_B}{s + \varpi_B}\right) \beta} \left(-\frac{R_2}{R_1}\right) = \frac{A_o \varpi_B \beta}{s + \varpi_B + A_o \varpi_B \beta} \left(-\frac{R_2}{R_1}\right)$$

$$A_{v,ClosedLoop} = \frac{A_o \varpi_B \beta}{s + \varpi_B (1 + A_o \beta)} \left(-\frac{R_2}{R_1} \right) = \frac{\frac{A_o \varpi_B \beta}{\varpi_B (1 + A_o \beta)}}{\frac{s + \varpi_B (1 + A_o \beta)}{\varpi_B (1 + A_o \beta)}} \left(-\frac{R_2}{R_1} \right)$$

$$A_{V,ClosedLoop} = \left(\frac{\frac{A_o \beta}{(1 + A_o \beta)} \left(-\frac{R_2}{R_1} \right)}{\frac{S}{\varpi_B (1 + A_o \beta)} + 1} \right)$$

$$A_{V,ClosedLoop} = \left(\frac{\frac{A_O \beta}{(1 + A_O \beta)} \left(-\frac{R_2}{R_1} \right)}{\frac{S}{\varpi_B (1 + A_O \beta)} + 1} \right)$$

$$A_{V,ClosedLoop} = \left(\frac{1}{1 + \frac{S}{\varpi_B (1 + A_O \beta)}}\right) A_{V,ClosedLoop} \Big|_{@DC}$$

Closed Loop Bandwidth

Closed Loop DC Gain

$$\varpi_{H} = \varpi_{B} \left(1 + \beta A_{O} \right) = \frac{\varpi_{T}}{A_{V,ClosedLoop} \Big|_{@DC}} \qquad A_{V,ClosedLoop} = \frac{A_{V,OpenLoop} \beta}{1 + A_{V,OpenLoop} \beta} \left(-\frac{R_{2}}{R_{1}} \right)$$

The frequency behavior is the same as for the the Non-Inverting case!

Thanks