MCAO5/MSCIT-05/PGDCA-05/BCA-11

CHAP. 5 BASIC COMPUTER ORG. AND
DESIGN

= 5-1 Instruction Codes

The user of a computer can control the process by means of a program

A program is a sequence of instructions that specify the operations, operand, the
sequence(control)

A instruction is a binary code that specifies a sequence of microoperations

Instruction codes together with data are stored in memory(=Stored Program
Concept)

The computer reads each instruction from memory and places it in a control
register. The control then interprets the binary code of the instruction and
proceeds to execute it by issuing a sequence of microoperations.

Instruction Code :
= A group of bits that instruct the computer to perform a specific operation
= It is usually divided into parts(refer to Fig. 5-1 instruction format)
Operation Code :
= The most basic part of an instruction code

= A group of bits that define such operations as add, subtract, multiply, shift, and
complement(bit 12-15: 2% = 16 distinct operations)

15 12 11 0

Op. Code Address §‘>

= Stored Program Organization :

= The simplest way to organize a computer

= One processor register : AC(Accumulator)

= The operation is performed with the memory operand and the content of AC
= Instruction code format with two parts : Op. Code + Address

= Op. Code : specify 16 possible operations(4 bit)

= Address : specify the address of an operand(12 bit)

= If an operation in an instruction code does not need an operand from memory, the

rest of the bits in the instruction(address field) can be used for other purpose
= .Memory : 12 bit = 4096 word(Instruction and Data are stored)

= Store each instruction code(program) and operand (data) in 16-bit memory word
= Addressing Mode
= Immediate operand address :

= the second part of an instruction code(address field) specifies an operand

= Direct operand address :

= the second part of an instruction code specifies the address of an operand

= Indirect operand address:
= the bits in the second part of the instruction designate an address of a memory word

in which the address of the operand is found
= One bit of the instruction code is used to distinguish between a direct and an indirect

address : [

=0 : Direct,
I=1: Indirec

15 14 12 11

0

L

Opcode

Address

@

= Effective Address

= The operand address in computation-type instruction or the target address in a branch-
type instruction

= 5-2 Computer Registers

= List of Registers for the Basic Computer : Tab. 5-1

= Basic computer registers and memory : Fig. 5-3
Data Register(DR) : hold the operand(Data) read from memory
Accumulator Register(AC) : general purpose processing register
Instruction Register(IR) : hold the instruction read from memory
Temporary Register(TR) : hold a temporary data during processing
Address Register(AR) : hold a memory address, 12 bit width
Program Counter(PC) :

hold the address of the next instruction to be read from memory after the current
instruction is executed

Instruction words are read and executed in sequence unless a branch instruction is
encountered

A branch instruction calls for a transfer to a nonconsecutive instruction in the
program

The address part of a branch instruction is transferred to PC to become the address of
the next instruction

To read instruction, memory read cycle is initiated, and PC is incremented by

one(next instruction fetch) <‘>

= Input Register(INPR) : receive an 8-bit character from an input device
= Output Register(OUTR) : hold an 8-bit character for an output device
= Common Bus System
= The basic computer has eight registers, a memory unit, and a control unit

= Paths must be provided to transfer information from one register to another
and between memory and registers

= A more efficient scheme for transferring information in a system with many
registers is to use a common bus.

= The connection of the registers and memory of the basic computer to a
common bus system :

= The outputs of seven registers and memory are connected to the common
bus

= The specific output is selected by mux(S0, S1, S2) :

= Control Input : LD, INC, CLR, Write, Read
= Address Register

= Accumulator(AC) : 3 Path

S

= 1) Register Microoperation : clear s Bus
AC, shfift AC,... N Memory uni e 7
= 2) Data Register : add DR to AC, and T T
DR to AC(AC End carry bit e 1
set/reset), memory READ(DR) T
= 3) INPR . PC —
, . I
= Note) Two microoperations can be S
executed at the same time - ‘ <
DR « AC :s,5,5, =100(4), DR(load) > 2t
AC « DR : DR — Adder & Logic — AC(load) N Adcer " | A
F = L‘D \N‘H CL‘R o
— A "
L‘D -
e L =
| — |

LD INR CLR

—FOUTR
A\
Clock

LD
+—16-bit common bus +—

Hex Code

Symbol =0 [|=1 Description
¢ AND Oxxx 8xxx And memory word to AC
-] ADD Txxx 9xxx Add memory word to AC
- 5 3 Compl}ter InStruCtlon LDA 2XXX AXXX Load memory word to AC
= 3 Instruction Code Formats : y STA 3xxx Bxxx Store content of AC in memory
: : BUN 4xxx Cxxx Branch unconditionally
: Memory-reference Instruction BSA 5xxx Dxxx Branch and Save return address
. Opcode =000~110 \ ISZ Bxxx Exxx Increment and skip if zero
= =0 :0xxx ~ 6xxx%, [=1: 8xx% ~ExxXX ’ gt@ ;igg 8:23 /éc
e CMS 7200 Complement AC
1=0 Dlre_Ct’ L b 1 2 4 0 CME 7100 Complement E
I=1 : Indirect ™ | | opcode Address CIR 7080 Circulate right AC and E
{ CIL 7040 Circulate left AC and E
INC 7020 Increment AC
SPA 7010 Skip next instruction if AC positive
n Register_reference instruction SNA 7008 Skip next instruction if AC negative
SZA 7004 Skip next instruction if AC zero
= 7xxx (1800 ~ 7001) : CLA,CMA, \ SZE 7002 Skip next instruction if E is 0
HLT 7001 Halt computer
15 14 12 11 0 (INP F800 Input character to AC
ouT F400 Output character from AC
01 1 1 Register Operation) SKI F200 Skip on input flag
SKO F100 Skip on output flag
ION F080 Interrupt On
\ IOF F040 Interrupt Off

= Input-Output instruction
= Fxxx(F800 ~ F040) : INP, OUT, ION, SKI,

15 14 12 11 0

111 1 1 I/O Operation

* Instruction Set Completeness
= Arithmetic, Logical, and shift : CMA, INC, ..
= Moving information to and from memory and AC : STA, LDA
= Program control : BUN, BSA, ISZ
= Input/Output : INP, OUT

= 5-4 Timing and Control
= Clock pulses
= A master clock generator controls the timing for all registers in the basic computer
= The clock pulses are applied to all F/Fs and registers in system

= The c%ock pulses do not change the state of a register unless the register is enabled by a control
signa

= The control signals are generated in the control unit :

= The control signals provide control inputs for the multi?lexers in the common bus, control
inputs in processor registers, and microoperations for the accumulator

= Two major types of control organization
= Hardwired Control :
= The control logic is implemented with gates, F/Fs, decoders, and other digital circuits
= + Fast operation, - Wiring change(if the design has to be modified)

= Microprogrammed Control :

= The control information is stored in a control memory, and the control memory is
programmed to initiate the required sequence of microoperations

= + Any required change can be done by updating the microprogram in control
memory, - Slow operation

Instruction register (IR)

Control Unit : (314 13 _12] -0
C Control Unit = Control Logic Gate |
3 X 8 Decoder + Instruction Register X8 Other ng
Timing Signall r ffff f f - N
c Timing Signal = 4 X 16 Decoder [} D°: >
4-bit Sequence Counter B Contol | oius,
c Exam) Control timing : - : oates
» Sequence Counter is cleared when Y T,
DsT,=1: DT,:5C«0 [514 FSRERL
. Memory R/W cycle time > Clock decoder
cycle time { !

.] tle—— Increment(INR)
» wait cycle. 4-bit
sequence
counter
(sC)

\ le—— Clock

l«—— Clear(CLR)

= Exam) Register transfer statement :
= A transfer of the content of PC into AR if timing signal T, is active
= 1) During T, active, the content of PC is placed onto the bus

= 2) LD(load) input of AR is enabled, the actual transfer occurs at the next positive transition of
the clock(T), rising edge clock)

= 3) SC(sequence counter) is incremented :

5-5 Instruction Cycle
= Instruction Cycle
= 1) Instruction Fetch from Memory
= 2) Instruction Decode
= 3) Read Effective Address(if indirect addressing mode)
= 4) Instruction Execution
= 5) Go to step 1) : Next Instruction[PC + 1]

» Instruction Fetch : TO, T1

T,: AR « PC

. T0=1 T,: IR < M[AR], PC < PC +1

= 1) Place the content of PC onto the bus by making the bus selection inputs S,5,5,=010
= 2) Transfer the content of the bus to AR by enabling the LD input of AR

@

= Tl=1 T,: IR < M[AR], PC < PC +1
= 1) Enable the read input memory
= 2) Place the content of memory onto the bus by making S,S,S,= 111
= 3) Transfer the content of the bus to IR by enable the LD input of IR
= 4) Increment PC by enabling the INR input of PC

& Instruction Decode : T2
T,:D,,...., D, < Decode IR(12-14), AR « IR(0-11), | « IR(15)

Op.code Address Di/lndirect

¢ Instruction Execution : T3, T4, T5, T6

= IO (I=1)— D,IT, (Execute) ~-Address
D,=0 : Memory Ref. r Indirect(I=1) = D;IT3(AR <« M[AR])
{ Direct (1=0) — nothingin T,
o Register Memory Ref Operand effective address
o Memory Ref.

€ Flowchart for instruction cycle(Initial
Configuration) :

IR(12-14) { D,=1 { Register(I=0) — D,I'T,(Execute) Read effective

- >

/ \ Memory unit

I

\
r?
Address|
kjfi\\\\ T Read
AR -1
| LD
S —
\T
PC CE)
v ‘—o
:ﬁ\ INR
\ IR 5
K_% x
LD
Clock
Common bus

[N

[EY

= Register Ref. Instruction
= I =D, I'Ty: Address]

= IR@3) = B; IR(O-11)
0 B,-B;;:12 Register Ref. Instruction (

= 5-6 Memory Ref. Instruction

D. : RegisterorI/O =1 W4
3X8 {Do : T Memory Ref.

DBy Instruction()

= AND to AC

D,T, : DR « M[AR]
« ADLD,T.: AC < AC ADR, SC «- 0

DT, : DR « M[AR]

* LDADT,.: AC <« AC+DR,E«C,,,SC«0

out?

D,T,: DR « M[AR]
D,T.: AC <~ DR, SC «0

Start
SC<4-0

AR<-PC

Ti

IR €«-M[AR], PC 4= PC+1

Te

Decode operation‘cyode in IR(12-14)
AR« IR(0-11), | 4=1|(15)

(Register or 1/0) = 1 0 = (Memory-reference

(170) =1 0 = (register) (indirect) = 1 0 = (direct)
T3 Ts Ts Ts
‘ Execute . Execute AR <4-MI[AR] Nothing
input—output register—reference
instruction instruction
SC«4-0 SC«4-0
Execute
memory-reference
instruction
SC<4-0

| , |

PC=10 [0 BSA 135
PC =21 | nextinstruction

= STA : memory write

DT, : M[AR] « AC, SC «-0 135 | 21(return address)
= BUN : branch unconditionally PC =136 _
D,T,:PC « AR, SC <0 Subroutine
= BSA : branch and save return address 1 |BUN 135
D.T,: M[AR]« PC, AR < AR +1
D.T.: PC « AR,SC «0 .
. 5Riaturn Address : save return address+l35 DT, : M[135] «~ 21(PC), 136(AR) «-135+1
= Subroutine Call : D,T; :136(PC) <—136(AR), SC «- 0

"D,T,:DR<« M[AR]
DT. : DR« DR +1
DT : M[AR] «— DR, if (DR =0) then (PC «~ PC +1),SC «- 0
= Control Flowchart :
= Flowchart for the 7 memory reference instruction

= The longest instruction : ISZ(T6)
= 3 bit Sequence Counter)

= 5-7 Input-Output and Interrupt
= Input-Output Configuration :
= Input Register(INPR), Output Register(OUTR)

. Thesl? two registers communicate with a communication interface serially and with the AC in
parallel

[1: Ready F;[Each quantity of information has eight bits of an alphanumeric code
0:Notready J rmput Flag(FGI), Output Flag(FGO)

= FGI :set when INPR is ready, clear when INPR is empty

= FGO :set when operation is completed, clear when output device is in the process of

printing
= Input-Output Instruction :
P _ P ;[Address]
= p=D,T,

- IRG@) =B, T IR(6-11)
0 Bg-B;;:61I/0 Instruction
= Program Interrupt
= I/0O Transfer Modes
= 1) Programmed I/0O, 2) Interrupt-initiated 1/0, 3) DMA, 4) IOP
= 2) Interrupt-initiated I/0
= Maskable Interrupt Int. mask

= Interrupt Cycle :
= During the execute phase, IEN is checked by the control
= IEN = 0 : the programmer does not want to use the interrt

so control continues with the next instruction cyc

= JEN = 1 : the control circuit checks the flag bit, If either fla
settol,RF/Fissettol
= At the end of the execute phase, control checks the value of:

= R =0 :instruction cycle

= R =1 :Instruction cycle
= Demonstration of the interrupt cycle :

= The memory location at address 0 as the place for storing the return address

= Interrupt Branch to memory location 1
« Interrupt cycle T,T,T,(IEN)(FGI + FGO): R «1 PC =

= The condition forR = 1 Interrupt 255
Here 256

= Modified Fetch Phase

» Modified Fetch and Decode Phase 1120
RT,: AR <~ 0, TR« PC

RT,: M[AR] « TR, PC «-0
RT,:PC <« PC+1 IEN <~ 0,R<«0,SC «0

0 |256(return address)

110

BUN 1120

Main Program

Interrupt

Service Routine

1

BUN 0

REFERENCE

= Mano, M. Morris (October 1992).
(3rd ed.). Prentice-Hall.

= Lecture notes of Dept. of Info. & Comm., Korea Univ. of Tech. &
Edu., Korea

https://archive.org/details/computersystemar0003mano
https://en.wikipedia.org/wiki/ISBN_(identifier)
https://en.wikipedia.org/wiki/Special:BookSources/0-13-175563-3

