P-151

Total Pages : 4
Roll No.

MT-610

Mathematical Programming-II

MA/MSC Mathematics (MAMT/MSCMT)
4th Semester Examination, 2023 (June)

Time : 2 Hours]

[Max. Marks : 35

Note : This paper is of Thirty Five (35) marks divided into two (02) Sections A and B. Attempt the questions contained in these sections according to the detailed instructions given therein.

SECTION-A
 (Long Answer Type Questions)

Note : Section 'A' contains Five (05) long answer type questions of Nine and Half ($9^{1 / 2}$) marks each. Learners are required to answer any Two (02) questions only.
($2 \times 9^{1 / 2}=19$)

1. Solve the following NLPP using the Kuhn-Tucker conditions

Maximize

$$
z=7 x_{1}^{2}+5 x_{2}^{2}-6 x_{1}
$$

Subject to constraints $x_{1}+2 x_{2} \leq 10$,

$$
\begin{aligned}
& x_{1}-3 x_{2} \leq 9, \\
& x_{1} \geq 0, x 2 \geq 0 .
\end{aligned}
$$

2. Use Beal's method to solve the following quadratic problem

Maximize

$$
z=4 x_{1}+6 x_{2}-x_{1}^{2}-3 x_{2}^{2}
$$

Subject to constraints $x_{1}+2 x_{2} \leq 4$,

$$
x_{1} \geq 0, x_{2} \geq 0 .
$$

3. Using Bellman's principle of optimality solve the dynamic problem

Minimize

$$
z=y_{1}+y_{2}+\ldots+y_{n}
$$

Subject to constraints $y_{1} \cdot y_{2} \ldots y_{n}=b$,

$$
y_{i} \geq 0 ; i=1,2, \ldots, n
$$

4. Solve the following LPP by dynamic programming

Maximize

$$
z=50 x_{1}+100 x_{2}
$$

Subject to constraints $10 x_{1}+5 x_{2} \leq 2500$,

$$
\begin{aligned}
& 4 x_{1}+10 x_{2} \leq 2000 \\
& x_{1}+1.5 x_{2} \leq 450 \\
& x_{1} \geq 0, x_{2} \geq 0 .
\end{aligned}
$$

5. Discuss Convex Separable programming also write its algorithm.

SECTION-B

(Short Answer Type Questions)

Note : Section 'B' contains Eight (08) short answer type questions of Four (04) marks each. Learners are required to answer any Four (04) questions only. $\quad(4 \times 4=16)$

1. State Bellman's optimality principle.
2. Write recursive relations using dynamic programming to the problem

$$
\begin{array}{ll}
\text { Maximize } & z=x_{1} x_{2} x_{3} \\
& x_{1}+x_{2}+x_{3}=5 \\
& x_{1} \geq 0, x_{2} \geq 0, x_{3} \geq 0 .
\end{array}
$$

3. Write four differences between dynamic programming and linear programming problem.
4. Write a short note on dynamic programming and its applications.
5. Give a general framework for Kuhn-Tucker conditions in a non linear programming problem.
6. Write algorithm for Wolfe's method to solve quadratic programming problem.
7. Minimize

$$
\begin{aligned}
& z=y_{1}^{2}+y_{2}^{2}+y_{3}^{2}, \\
& y_{1}+y_{2}+y_{3} \geq 15 \\
& y_{1}, y_{2}, y_{3} \geq 0
\end{aligned}
$$

Subject to constraints
8. Use dynamic prograrnming to solve the following LPP

Maximize

$$
z=3 x_{1}+5 x_{2}
$$

Subject to constraints $x_{1} \leq 4$

$$
\begin{aligned}
& x_{2} \leq 6 \\
& 3 x_{1}+2 x_{2} \leq 18 \\
& x_{1} \geq 0, x_{2} \geq 0 .
\end{aligned}
$$

