P-150

Total Pages : 4
Roll No.

MT-609

Integral Equations

MA/MSC Mathematics (MAMT/MSCMT)

4th Semester Examination, 2023 (June)

Time : 2 Hours]

[Max. Marks : 35
Note : This paper is of Thirty Five (35) marks divided into two (02) Sections A and B. Attempt the questions contained in these sections according to the detailed instructions given therein.

SECTION-A
 (Long Answer Type Questions)

Note : Section 'A' contains Five (05) long answer type questions of Nine and Half ($9^{1 / 2}$) marks each. Learners are required to answer any Two (02) questions only. ($2 \times 91 / 2=19$)

1. Show that the function $g(x)=x e^{x}$ is a solution of the Volterra integral equation $g(x)=\sin x+2 \int_{0}^{x} \cos (x-t) g(t) d t$.
2. Find the eigen values and eigen functions of the homogeneous integral equation

$$
g(x)=\lambda \int_{1}^{2}\left(x t+\frac{1}{x t}\right) g(t) d t .
$$

3. Solve the following integral equations :
(a) $g(x)=e^{x}+\lambda \int_{0}^{1} 2 e^{x} \cdot e^{t} g(t) d t$.
(b) $g(x)=e^{x}+\lambda \int_{0}^{10} x t g(t) d t$.
4. Slove the Volterra integral equation of the first kind

$$
\int_{0}^{x} a^{x-1} g(t) d t=f(x) . f(0)=0 .
$$

5. Slove the integral equation with the aid of resolvent kernel:

$$
g(x)=e^{x^{2}}+\int_{0}^{x} e^{x^{2}-t^{2}} g(t) d t .
$$

SECTION-B

(Short Answer Type Questions)

Note : Section 'B' contains Eight (08) short answer type questions of Four (04) marks each. Learners are required to answer any Four (04) questions only. $\quad(4 \times 4=16)$

1. Show that the function $g(x)=x e^{-x}$ is a solution of the equation

$$
g(x)-4 \int_{0}^{\infty} e^{-(x+t)} g(t) d t=(x-1) e^{-x} .
$$

2. Find the eigen values and eigen functions of the integral equation

$$
g(x)-\lambda \int_{0}^{1}\left(2 x t-4 x^{2}\right) g(t) d t .
$$

3. Convert the following BVP into integral equation

$$
\frac{d^{2} y}{d x^{2}}+\lambda y=0 ; y(0)=0=y(l) .
$$

4. Solve the integral equation by the method of resolvent kernal

$$
g(x)=1+\lambda \int_{0}^{\pi} \sin (x-t) g(t) d t
$$

5. Define following with example :
(a) Integral equation.
(b) Linear integral equation.
(c) Fredholm integral equation of first and second kind.
(d) Volterra integral equation of first and second kind.
6. Solve the integral equation :

$$
\begin{gathered}
g(x)=x+\lambda \int_{0}^{1} \mathrm{~K}(x, t) g(t) d t \\
\mathrm{~K}(x, t)= \begin{cases}x(t-1), & 0 \leq x \leq t \\
t(x-1), & t \leq x \leq 1\end{cases}
\end{gathered}
$$

7. Solve the integral equation :

$$
g(x)+5 \int_{0}^{x} \cos 2(x-t) g(t) d t=10, \text { where } g(0)=2
$$

8. Solve the following integral equation by the method of successive approximations to third order

$$
g(x)=1+\lambda \int_{0}^{1}(x+t) g(t) d t, \text { by taking } g(0)=1
$$

