P-149

Total Pages : 4
Roll No.

MT-608

Numerical Analysis-II

MA/MSC Mathematics (MAMT/MSCMT)

4th Semester Examination, 2023 (June)

Time : 2 Hours]
[Max. Marks : 35

Note : This paper is of Thirty Five (35) marks divided into two (02) Sections A and B. Attempt the questions contained in these sections according to the detailed instructions given therein.

SECTION-A
 (Long Answer Type Questions)

Note : Section 'A' contains Five (05) long answer type questions of Nine and Half ($91 / 2$) marks each. Learners are required to answer any Two (02) questions only.
($2 \times 91 / 2=19$)

1. Using the method of least-squares find a straight line that fits the following data :

x	71	68	73	69	67	65	66	67
y	69	72	70	70	68	67	68	64

Also find the value of y at $x=68.5$
2. Compute $y(1)$ by Adams-Moulton method, given that

$$
\begin{aligned}
& \frac{d y}{d t}=y-t^{2}, y(0)=1 \\
& y(0.2)=1.2859, y(0.4)=1.46813, y(0.6)=1.73779
\end{aligned}
$$

3. Solve the boundary value problem $\frac{d^{2} y}{d x^{2}}=y, y(0)=0$, $y(0.6)=0.7$ by shooting method.
4. Fit the curve $p \mathrm{~V}^{r}=k$ to the data given in the table.

p	0.5	1	1.5	2	2.5	3
V	1.62	1	0.75	0.62	0.52	0.46

5. Determine the best minimax approximation to the function $f(x)=x^{2}$ on $[0,1]$ with a straight line.

SECTION-B

(Short Answer Type Questions)

Note : Section 'B' contains Eight (08) short answer type questions of Four (04) marks each. Learners are required to answer any Four (04) questions only. $\quad(4 \times 4=16)$

1. Express $\mathrm{T}_{0}(x)+2 \mathrm{~T}_{1}(x)+\mathrm{T}_{2}(x)$ as a polynomial in x.
2. Find the best lower degree approximation polynomial to $x^{3}+2 x^{2}$.
3. Use Picard's method to compare $y(0.5)$, where $y(t)$ is the solution to the given IVP $\frac{d y}{d t}=1+y, y(0)=1$, Perform upto third approximation.
4. Compute $y(0.2)$ by Taylor's series, where $y(t)$ is the solution of the IVP, $\frac{d y}{d t}=t+y, y(0)=1$.
5. Compute $y(1.2)$ by using Runge-Kutta fourth order method, where $y(t)$ is the solution of the IVP $\frac{d y}{d t}=t y, y(1)=2$.
6. Obtain Taylor series expansion of the function $f(x)=e^{x}$, about $x=0$. Find the number of terms of the exponential series such that their sum gives the value of e^{x} correct to six decimal places at $x=1$.
7. Solve the boundary value problem

$$
\frac{d^{2} y}{d x^{2}}=x y, y(0)+y(0)=1, y(1)=1, \text { with step size } h=\frac{1}{3} .
$$

8. Define the following :
(a) Runge-Kutta method of fourth order.
(b) Orthogonal property of Chebyshev Polynomial.
