P-144

Total Pages : 4
Roll No.

MT-603

Numerical Analysis-I

MA/MSC Mathematics (MAMT/MSCMT)
3rd Semester Examination, 2023 (June)

Time : 2 Hours]

[Max. Marks : 35
Note : This paper is of Thirty Five (35) marks divided into two (02) Sections A and B. Attempt the questions contained in these sections according to the detailed instructions given therein.

SECTION-A
 (Long Answer Type Questions)

Note : Section 'A' contains Five (05) long answer type questions of Nine and Half ($9^{1 / 2}$) marks each. Learners are required to answer any Two (02) questions only.
($2 \times 9^{1 / 2}=19$)

1. Solve the system of equation by LU factorization method.

$$
\begin{aligned}
& 2 x+3 y+z=9 \\
& x+2 y+3 z=6 \\
& 3 x+y+2 z=8
\end{aligned}
$$

2. Find all the eigenvalue and eigenvector of the matrix
$A=\left[\begin{array}{ccc}1 & \sqrt{3} & 4 \\ \sqrt{3} & 4 & \sqrt{3} \\ 4 & \sqrt{3} & 1\end{array}\right]$, using Jacobi method (perform two iteration).
3. Using the Rutishauser method, find all the eigenvalues of the matrix $\mathrm{A}=\left[\begin{array}{ll}3 & 1 \\ 1 & 1\end{array}\right]$.
4. Find the root of the equation $x^{3}-x^{2}-x-1=0$ using Chebyshev method.
5. Define the following :
(a) Iteration Method.
(b) Hermitian Matrix.
(c) Unitary Matrix.
(d) Newton-Raphson Method for multiple root.

SECTION-B

(Short Answer Type Questions)

Note : Section 'B' contains Eight (08) short answer type questions of Four (04) marks each. Learners are required to answer any Four (04) questions only. $\quad(4 \times 4=16)$

1. Find square root of 10 using Newton-Raphson method.
2. Find the root of the equation $4 \sin x+x^{2}=0$ by secant method.
3. Find a root of the equation $x^{3}+x^{2}-x-1=0$ with multiplicity 2 , taking initial approximation as $x_{0}=-0.9$.
4. Divide $x^{5}-2 x^{4}+2 x^{2}+4 x-1=0$ by $(x-3)$ using synthetic division and find quotient polynomial and remainder.
5. Using the method of determinant solve the given system of equations

$$
\begin{aligned}
& 2 x-3 y+5 z=11 \\
& 3 x+2 y-4 z=-5 \\
& x+y-2 z=-3 .
\end{aligned}
$$

6. Obtain the largest eigenvalue in magnitude and corresponding eigenvector of the matrix.

$$
A=\left[\begin{array}{ccc}
1 & 3 & -1 \\
3 & 2 & 4 \\
-1 & 4 & 10
\end{array}\right]
$$

7. Find a real root of $x^{3}-x^{2}-x-1=0$ near $x=2$, using Birge-Vieta method.
8. Find double root of the equation $x^{3}-0.75 x+0.25=0$, taking initial approximation $x_{0}=0.3$.
