P-143

Total Pages : 3
Roll No.

MT-602

Viscous Fluid Dynamics-I

MA/MSC Mathematics (MAMT/MSCMT)
3rd Semester Examination, 2023 (June)

Time : 2 Hours]

[Max. Marks : 35
Note : This paper is of Thirty Five (35) marks divided into two (02) Sections A and B. Attempt the questions contained in these sections according to the detailed instructions given therein.

SECTION-A
 (Long Answer Type Questions)

Note : Section 'A' contains Five (05) long answer type questions of Nine and Half ($91 / 2$) marks each. Learners are required to answer any Two (02) questions only. ($2 \times 9^{11 / 2=19 \text {) }) ~}$

1. Show that for each state of stress at a point, there exists at least one set of three mutually perpendicular principal directions.
2. Show that the vorticity vector Ω of an incompressible viscous fluid moving under no external forces satisfies the differential equation $\frac{\mathrm{D} \Omega}{\mathrm{D} t}=(\Omega . \nabla) q+v \nabla^{2} \Omega$ where v is the kinematic of viscosity.
3. Show that in the dynamics of compressible fluids, there are only five independent dimensionless groups.
4. State and prove the Navier-Stokes equations of motion for a viscous fluid compressible fluid.
5. Discuss unsteady flow of a viscous incompressible fluid due to an oscillating plane wall.

SECTION-B
 (Short Answer Type Questions)

Note : Section 'B' contains Eight (08) short answer type questions of Four (04) marks each. Learners are required to answer any Four (04) questions only. $\quad(4 \times 4=16)$

1. Let the stress tensor at a point in the fluid be $\left[\begin{array}{lll}5 & 2 & 2 \\ 2 & 2 & 1 \\ 2 & 1 & 2\end{array}\right]$.

Obtain the principal stresses.
2. Show that the two principal directions corresponding to any two distinct principal stresses are orthogonal.
3. The resistance force R of a supersonic plane during flight can be considered as dependent upon the length of the aircraft l, velocity V , air velocity μ, air density ρ and bulk modulus of air K. Find an expression for R.
4. Define and give the physical importance of the followings: Grashoff Number, Eckert Number, Reynold's Number, Brinkman Number.
5. Derive the velocity distribution in plane poiseuille flow.
6. Write short notes on :
(a) Limitations of the Navier-Stokes equations.
(b) Exact Solutions of the Navier-Stokes equations.
7. What type of the motion do the following velocity components constitute?
$u=a+b y-c z ; \quad v=d-b x+e z ; w=f+c x-e y ;$
where a, b, c, d, e, f are arbitrary constants.
8. Write Navier-Stokes equations in cartesian co-ordinates. Simplify these equations when the fluid is incompressible and viscous effects are negligible.

