P-139

Total Pages : 3
Roll No.

MT-508

Special Functions

MA/MSC Mathematics (MAMT/MSCMT)
2nd Semester Examination, 2023 (June)

Time : 2 Hours]

[Max. Marks : 35
Note : This paper is of Thirty Five (35) marks divided into two (02) Sections A and B. Attempt the questions contained in these sections according to the detailed instructions given therein.

SECTION-A
 (Long Answer Type Questions)

Note : Section 'A' contains Five (05) long answer type questions of Nine and Half ($91 / 2$) marks each. Learners are required to answer any Two (02) questions only. ($2 \times 9^{11 / 2=19 \text {) }) ~}$

1. Solve in series $\left(1-x^{2}\right) \frac{d^{2} y}{d x^{2}}-2 x \frac{d y}{d x}+y=0$.
2. Prove that $J_{n}(x)$ is the coefficient in the expansion of

$$
e^{\frac{x}{2}\left(z-\frac{1}{z}\right)}
$$

3. Solve Hypergeometric equation

$$
x(1-x) \frac{d^{2} y}{d x^{2}}+\{\gamma-(\alpha+\beta+1) x\} \frac{d y}{d x}-\alpha \beta \gamma=0 ; \text { about } x=0 .
$$

4. Prove that $\left(1-2 x z+z^{2}\right)^{-1 / 2}=\sum_{n=0}^{\infty} z^{n} P_{n}(x),|x| \leq 1,|z|<1$.
5. Show that the Laguerre polynomials are orthogonal over $(0, \infty)$ with respect to the weight function e^{-x}.

SECTION-B

(Short Answer Type Questions)

Note : Section 'B' contains Eight (08) short answer type questions of Four (04) marks each. Learners are required to answer any Four (04) questions only. $\quad(4 \times 4=16)$

1. Prove that $(n+1) \mathrm{L}_{n+1}(x)=(2 n+1-x) \mathrm{L}_{n}(x)-n \mathrm{~L}_{n-1}(x)$
2. Define Hypergeometric function and write its different forms.
3. Express $H(x)=x^{4}+2 x^{3}+2 x^{2}-x-3$ in terms of Hermite's polynomials.
4. Show that $L_{n}(0)=1$.
5. State and prove orthogonality property of Laguerre polynomials.
6. Prove that $H_{2 n}(0)=(-1)^{n \frac{(2 n)!}{n!}}$.
7. Prove that $J_{1 / 2}(x)=\sqrt{\left(\frac{2}{\pi x}\right)} \sin x$
8. Prove that $(2 n+1) \mathrm{P}_{n}(x)=\mathrm{P}_{n+1}^{\prime}(x)-\mathrm{P}_{n-1}^{\prime}(x)$.
