Total Pages : 3

Roll No.

MT-507

Topology

MA/MSC Mathematics (MAMT/MSCMT)

2nd Semester Examination, 2023 (June)

Time : 2 Hours]

[Max. Marks : 35

Note : This paper is of Thirty Five (35) marks divided into two (02) Sections A and B. Attempt the questions contained in these sections according to the detailed instructions given therein.

SECTION-A

(Long Answer Type Questions)

- **Note :** Section 'A' contains Five (05) long answer type questions of Nine and Half (9½) marks each. Learners are required to answer any Two (02) questions only. (2×9½=19)
- 1. (a) If τ_1 and τ_2 are topologies on the same set X, then prove that $\tau_1 \cap \tau_2$ is also a topology on X.

P-138/MT-507

[P.T.O.

- (b) Prove that a subset A of a topological space is open iff Å = A, where Å is interior of A.
- 2. Prove that one-one onto map $f : (X, \tau) \to (Y, \mu)$ is a Homeomorphism iff $\overline{f(A)} = f(\overline{A})$, for any $A \subset X$.
- 3. (a) Prove that the property of a space being T_1 space is a topological property.
 - (b) Prove that every metric space is T_2 space.
- 4. Prove that a subset of R is connected iff it is an interval.
- 5. (a) Show that a closed subset of a compact space is compact.
 - (b) Show that T_{∞} is a topology on X_{∞} .

SECTION-B

(Short Answer Type Questions)

- **Note :** Section 'B' contains Eight (08) short answer type questions of Four (04) marks each. Learners are required to answer any Four (04) questions only. (4×4=16)
- 1. Prove that for a subset A of a topological space (X, τ), $\overline{A} = A \cup A'$

where \overline{A} = closure of A and A' = Derived set of A.

- 2. Let (X, τ) be a topological space and $x \in X$ be arbitrary and if N_1 and N_2 are neighborhoods of x, then show that $N_1 \cap N_2$ is also a neighborhoods of x.
- 3. Prove that a function $f: X \to Y$ is continuous iff the inverse image under f of every closed subset of Y is closed in X.
- 4. Prove that the property of space being T_2 –space is a hereditary property.
- 5. Prove that every T_3 space is T_2 space.
- 6. Show that two open subsets of a topological space are separated iff they are disjoint.
- Prove that the product space X × Y is connected iff X and Y are connected.
- **8.** Show that every compact topological space is locally compact but converse is not necessarily true.