P-137

Total Pages : 4
Roll No.

MT-506

Advanced Algebra-II

MA/MSC Mathematics (MAMT/MSCMT)
2nd Semester Examination, 2023 (June)

Time : 2 Hours]

[Max. Marks : 35
Note : This paper is of Thirty Five (35) marks divided into two (02) Sections A and B. Attempt the questions contained in these sections according to the detailed instructions given therein.

SECTION-A
 (Long Answer Type Questions)

Note : Section 'A' contains Five (05) long answer type questions of Nine and Half ($9^{1 / 2}$) marks each. Learners are required to answer any Two (02) questions only.
($2 \times 9^{1 / 2}=19$)

1. Let $t: \mathrm{R}^{3} \rightarrow \mathrm{R}^{3}$ be a linear transformation such that $t(a . b$, $c)=(3 a+c,-2 a+b,-a+2 b+4 c)$. What is the matrix of t in ordered basis $\left\{\alpha_{1}, \alpha_{2}, \alpha_{3}\right\}$, where $\alpha_{1}=(1,0,1), \alpha_{2}=$ $\{-1,2,1\} \alpha_{3}=\{2,1,1\}$.
2. Find the Characteristic roots and characteristic spaces of the

$$
\text { matrix }\left[\begin{array}{rrr}
1 & -1 & 2 \\
0 & 3 & 1 \\
0 & 0 & 4
\end{array}\right]
$$

3. State and Prove Gram Schmidt orthogonalization process.
4. Prove that if K be a Galois extension of a field F. Then there exists a one-to-one correspondence between the set of all subfields of K containing F and the set of all subgroups of $G(K \backslash F)$. Further, if E is any subfiels of K which contains F , then
(i) $[\mathrm{K}: \mathrm{E}]=o[\mathrm{G}(\mathrm{K} \backslash \mathrm{E})]$ and $[\mathrm{E}: \mathrm{F}]=$ index of $\mathrm{G}(\mathrm{K} \backslash \mathrm{E})$ in $\mathrm{G}(\mathrm{K} \backslash \mathrm{F})$,
(ii) E is normal extension of F iff $\mathrm{G}(\mathrm{K} \backslash \mathrm{E})$ is normal subgroup of $G(K \backslash F)$.
(iii) If E is a normal extension of F, then $G(E \backslash F) \cong G$ $(K \backslash F) \backslash G(K \backslash E)$.
5. Let V be a finite dimensional inner product space. Then a linear transformation $t: \mathrm{V} \rightarrow \mathrm{V}$ is orthogonal if and only if its matrix relative to an orthonormal basis is orthogonal.

SECTION-B

(Short Answer Type Questions)

Note : Section 'B' contains Eight (08) short answer type questions of Four (04) marks each. Learners are required to answer any Four (04) questions only. $\quad(4 \times 4=16)$

1. Define :
(a) Normal Extension.
(b) Automorphism.
2. Show that the Galois group of $x^{4}+1 \in \mathrm{Q}[x]$ is the Klein four group.
3. Prove that for any matrix A, the row rank of A, equals to the column rank of A.
4. Let A be a matrix of order $n \times n$ over a field F . Prove that a scalar $\lambda \in \mathrm{F}$ is an eigenvalue of A iff $\operatorname{det}(\mathrm{A}-\lambda \mathrm{I})=0$.
5. Define real inner product space with example.
6. If W is any subspace of a finite dimensional inner product space V , then $\left(\mathrm{W}^{\perp}\right)^{\perp}=\mathrm{W}$
7. Prove that the eigenvalues of a self-adjoint linear transformation are real.
8. Let K be a normal extension of a field F and L is an intermediate field, so prove that $\mathrm{F} \subset \mathrm{L} \subset \mathrm{K}$, then K is also a normal extension of L.
