P-136

Total Pages : 4
Roll No.

MT-505

Mechanics-I

MA/MSC Mathematics (MAMT/MSCMT)
1st Semester Examination, 2023 (June)

Time : 2 Hours]

[Max. Marks : 35

Note : This paper is of Thirty Five (35) marks divided into two (02) Sections A and B. Attempt the questions contained in these sections according to the detailed instructions given therein.

SECTION-A

(Long Answer Type Questions)

Note : Section 'A' contains Five (05) long answer type questions of Nine and Half ($9^{1} / 2$) marks each. Learners are required to answer any Two (02) questions only. ($2 \times 91 / 2=19$)

1. State and prove D^{\prime} Alembert's Principle.
2. Find the length of simple equivalent pendulum in the following cases, the axis horizontal:
(a) Circular disc; axis a tangent it;
(b) Hemisphere; axis a diameter of the base.
3. Two equal cylinders each of mass m are bound together by an elastic string whose tension is T and roll with axis horizontal down a rough plane of inclination α. Show that their acceleration is $\frac{2}{3} g \sin \alpha\left[1-\frac{2 \mu \mathrm{~T}}{m g \sin \alpha}\right]$, where μ is the coefficient of friction between the cylinders.
4. State and prove Principal of conservation of Linear Momentum.
5. To establish Lagrange's equations for Impulsive Forces.

SECTION-B (Short Answer Type Questions)

Note : Section 'B' contains Eight (08) short answer type questions of Four (04) marks each. Learners are required to answer any Four (04) questions only. $\quad(4 \times 4=16)$

1. A partical of mass m within a rough circular tube, of mass M lying on a horizontal plane and initially the tube is at rest while particle has an angular velocity round the tube. Show that by the time relative motion ceases the friction $\frac{M}{M+2 m}$ of the initial kinetic energy has been dissipated by friction.
2. Prove that a body moves under the action of a system of conservative forces, the sum of its Kinetic and Potential energies is constant throughout the motion.
3. A body moves under no forces about a point O , the principal moments of inertia at O being $6 \mathrm{~A}, 3 \mathrm{~A}$ and A . Initially the angular velocity of the body has components $w_{1}=n, w_{2}=$ $0, w_{3}=3 n$ about the principal axes. Show that at any later time $w_{2}=-\sqrt{5} n \tan h \sqrt{5} n t$ and ultimately the body rotates about the mean axis.
4. To deduce the general equations of motion of a rigid body from D' Alembert's Principle (when forces are finite).
5. If $2 \mathrm{~T}=\mathrm{A} w_{1}^{2}+\mathrm{B} w_{2}^{2}+\mathrm{C} w_{3}^{2}$ and C be the moments of the impressed forces about the instantaneous axis of rotation and w be the resultant angular velocity, prove that

$$
\frac{d \mathrm{~T}}{d t}=w \mathrm{G} .
$$

6. Derive the equation of translation motion.
7. A circular board is placed on smooth horizontal plane, and a boy runs round the edge of it at a uniform rate, what is the motion of the board?
8. Define the following :
(a) Moment of Inertia.
(b) Principle of Conservation of Energy.
