P-134

Total Pages : 3
Roll No.

MT-503

Differential Equation and Calculus of Variation

MA/MSC Mathematics (MAMT/MSCMT)
1st Semester Examination, 2023 (June)

Time : 2 Hours]
[Max. Marks : 35

Note : This paper is of Thirty Five (35) marks divided into two (02) Sections A and B. Attempt the questions contained in these sections according to the detailed instructions given therein.

SECTION-A

(Long Answer Type Questions)

Note : Section 'A' contains Five (05) long answer type questions of Nine and Half ($91 / 2$) marks each. Learners are required to answer any Two (02) questions only. ($2 \times 91 / 2=19$)

1. Solve $r=a^{2} t$ by Monge's method.
2. Use the method of separation of variables to solve the equation

$$
\frac{\partial u}{\partial x}=2 \frac{\partial u}{\partial t}+u \text {. given that } u(x, 0)=6 e^{-3 x} .
$$

3. Reduce $\frac{\partial^{2} z}{\partial x^{2}}=x^{2} \frac{\partial^{2} z}{\partial y^{2}}$ to canonical form.
4. Find the eigenvalues and eigenfunction for the boundary value problem

$$
y^{\prime \prime}-2 y+\lambda y=0 ; y(0)=0, y(\pi)=0 .
$$

5. Find the extremal of the functional

$$
I[y(x)]=\int_{0}^{\pi / 2}\left[y^{n^{2}}-y^{2}+x^{2}\right] d x
$$

under the conditions

$$
y(0)=1, y^{\prime}(0)=0, y(\pi / 2)=0, y^{\prime}(\pi / 2)=-1 .
$$

SECTION-B

(Short Answer Type Questions)

Note : Section 'B' contains Eight (08) short answer type questions of Four (04) marks each. Learners are required to answer any Four (04) questions only. $\quad(4 \times 4=16)$

1. Show that $1, x, x^{2}$ are three particular integrals of $x\left(x^{2}-1\right) y_{1}$ $+x^{2}-\left(x^{2}-1\right) y-y^{2}=0$, and hence obtain the general solution $y(x+k)=x+k x^{2}, k$ being an arbitrary constant.
2. Solve : $(2 x z-y z) d x+(2 y z-x z) d y-\left(x^{2}-x y+y^{2}\right) d z=0$.
3. Find the characteristics of $4 r+5 s+t+p+q-2=0$.
4. Solve $2 s+r t-s^{2}=1$.
5. Test for extremum of the functional

$$
\mathrm{F}(y(x))=\int_{0}^{1} \sqrt{1+y^{2}} d y, \quad y(0)=0, y(1)=2
$$

6. Solve $r x=(n-1) p$.
7. Find the nature of following PDE

$$
3 \frac{\partial^{2} z}{\partial x^{2}}+2 \frac{\partial^{2} z}{\partial x \partial y}+5 \frac{\partial^{2} z}{\partial y^{2}}+x \frac{\partial z}{\partial y}=0 .
$$

8. Obtain the Euler-Lagrange equation for the extremals of the functional

$$
\int_{x_{1}}^{x_{2}}\left[y^{2}-y y^{\prime}+y^{\prime 2}\right] d y .
$$

