P-134

Total Pages: 3 Roll No.

MT-503

Differential Equation and Calculus of Variation

MA/MSC Mathematics (MAMT/MSCMT)

1st Semester Examination, 2023 (June)

Time: 2 Hours] [Max. Marks: 35

Note: This paper is of Thirty Five (35) marks divided into two (02) Sections A and B. Attempt the questions contained in these sections according to the detailed instructions given therein.

SECTION-A

(Long Answer Type Questions)

Note: Section 'A' contains Five (05) long answer type questions of Nine and Half (9½) marks each. Learners are required to answer any Two (02) questions only.

 $(2 \times 9\frac{1}{2} = 19)$

1. Solve $r = a^2t$ by Monge's method.

P-134 / MT-503 [P.T.O.

2. Use the method of separation of variables to solve the equation

$$\frac{\partial u}{\partial x} = 2 \frac{\partial u}{\partial t} + u$$
. given that $u(x, 0) = 6e^{-3x}$.

- 3. Reduce $\frac{\partial^2 z}{\partial x^2} = x^2 \frac{\partial^2 z}{\partial y^2}$ to canonical form.
- **4.** Find the eigenvalues and eigenfunction for the boundary value problem

$$y'' - 2y + \lambda y = 0$$
; $y(0) = 0$, $y(\pi) = 0$.

5. Find the extremal of the functional

$$I[y(x)] = \int_0^{\pi/2} [y''^2 - y^2 + x^2] dx$$

under the conditions

$$y(0) = 1$$
, $y'(0) = 0$, $y(\pi/2) = 0$, $y'(\pi/2) = -1$.

SECTION-B

(Short Answer Type Questions)

Note: Section 'B' contains Eight (08) short answer type questions of Four (04) marks each. Learners are required to answer any Four (04) questions only. (4×4=16)

1. Show that 1, x, x^2 are three particular integrals of $x(x^2 - 1)y_1 + x^2 - (x^2 - 1)y - y^2 = 0$, and hence obtain the general solution $y(x + k) = x + kx^2$, k being an arbitrary constant.

- 2. Solve: $(2xz yz)dx + (2yz xz)dy (x^2 xy + y^2)dz = 0$.
- 3. Find the characteristics of 4r + 5s + t + p + q 2 = 0.
- **4.** Solve $2s + rt s^2 = 1$.
- 5. Test for extremum of the functional

$$F(y(x)) = \int_{0}^{1} \sqrt{1 + y^{2}} dy, \quad y(0) = 0, y(1) = 2.$$

- **6.** Solve rx = (n-1)p.
- 7. Find the nature of following PDE

$$3\frac{\partial^2 z}{\partial x^2} + 2\frac{\partial^2 z}{\partial x \partial y} + 5\frac{\partial^2 z}{\partial y^2} + x\frac{\partial z}{\partial y} = 0.$$

8. Obtain the Euler-Lagrange equation for the extremals of the functional

$$\int_{x_1}^{x_2} [y^2 - yy' + y'^2] dy.$$