Total Pages : 3

Roll No.

MT-501

Advanced Algebra-I

MA/MSC Mathematics (MAMT/MSCMT)

1st Semester Examination, 2023 (June)

Time : 2 Hours]

[Max. Marks : 35

Note : This paper is of Thirty Five (35) marks divided into two (02) Sections A and B. Attempt the questions contained in these sections according to the detailed instructions given therein.

SECTION–A (Long Answer Type Questions)

- **Note :** Section 'A' contains Five (05) long answer type questions of Nine and Half (9¹/₂) marks each. Learners are required to answer any Two (02) questions only. (2×9¹/₂=19)
- 1. Let G_1 and G_2 is a group. Let H_1 and H_2 be a normal subgroup of G_1 and G_2 respectively then prove that
 - (a) $H_1 \times H_2$ is normal subgroup of $G_1 \times G_2$

(b)
$$\frac{G_1 \times G_2}{H_1 \times H_2} \cong \frac{G_1}{H_1} \times \frac{G_2}{H_2}$$

P-132/MT-501

[P.T.O.

- 2. If M and M' are two R-modules and if $f : M \to M'$ is a homomorphism, then
 - (a) $f(0) = 0 \in M'$
 - (b) $f(-x) = -f\{x\}$
 - (c) f(x y) = f(x) f(y) for all $x, y \in M$.
- 3. If B = { $b_1 = (-1,1,1)$, $b_2 = (1,-1,1)$, $b_3 = (1,1,-1)$ } is the usual basis of R³. Find its dual basis.
- 4. Let K be a field extension of a field F. Then an element *a* in K is algebraic over F iff F(*a*) is finite extension of F, i.e. [F(*a*): F] is finite.
- 5. Conjugacy on a group G is an equivalence relation.

SECTION-B

(Short Answer Type Questions)

- **Note :** Section 'B' contains Eight (08) short answer type questions of Four (04) marks each. Learners are required to answer any Four (04) questions only. (4×4=16)
- 1. Define
 - (a) Image of Homomorphism.
 - (b) Isomorphism

P-132/MT-501

[2]

- **2.** Prove that the conjugacy on a group G is an equivalence relation.
- 3. Prove that every finite group G has a composition series.
- 4. Define
 - (a) Euclidean ring.
 - (b) Unique factorization domain.
- 5. Prove that every field is Euclidean ring.
- 6. Show that the following mapping is not linear $t : \mathbb{R}^2 \to \mathbb{R}^2$ given by $t(x, y) = (x^3, y^3)$ for all $(x, y) \in \mathbb{R}^2$.
- 7. Let K be field extension of a field F and let $\alpha \in K$ be a algebraic over F. Then any two minimal monic polynomial for α over F are equal.
- 8. Let G_1 and G_2 be groups and if $H_1 = \{(a, e_2) | a \in G_1\} \in$ then $G_1 \times G_2 \cong G_2 \times G_1$.