P-132

Total Pages : 3
Roll No.

MT-501

Advanced Algebra-I

MA/MSC Mathematics (MAMT/MSCMT)

1st Semester Examination, 2023 (June)

Time : 2 Hours]

[Max. Marks : 35
Note : This paper is of Thirty Five (35) marks divided into two (02) Sections A and B. Attempt the questions contained in these sections according to the detailed instructions given therein.

SECTION-A
 (Long Answer Type Questions)

Note : Section 'A' contains Five (05) long answer type questions of Nine and Half ($9^{1} / 2$) marks each. Learners are required to answer any Two (02) questions only. ($2 \times 9^{1 / 2}=19$)

1. Let G_{1} and G_{2} is a group. Let H_{1} and H_{2} be a normal subgroup of G_{1} and G_{2} respectively then prove that
(a) $\mathrm{H}_{1} \times \mathrm{H}_{2}$ is normal subgroup of $\mathrm{G}_{1} \times \mathrm{G}_{2}$
(b) $\frac{\mathrm{G}_{1} \times \mathrm{G}_{2}}{\mathrm{H}_{1} \times \mathrm{H}_{2}} \cong \frac{\mathrm{G}_{1}}{\mathrm{H}_{1}} \times \frac{\mathrm{G}_{2}}{\mathrm{H}_{2}}$
2. If M and M^{\prime} are two R -modules and if $f: \mathrm{M} \rightarrow \mathrm{M}^{\prime}$ is a homomorphism, then
(a) $f(0)=0 \in \mathrm{M}^{\prime}$
(b) $f(-x)=-f\{x)$
(c) $f(x-y)=f(x)-f(y)$ for all $x, y \in \mathrm{M}$.
3. If $\mathrm{B}=\left\{b_{1}=(-1,1,1), b_{2}=(1,-1,1), b_{3}=(1,1,-1)\right\}$ is the usual basis of R^{3}. Find its dual basis.
4. Let K be a field extension of a field F . Then an element a in K is algebraic over F iff $\mathrm{F}(a)$ is finite extension of F , i.e. $[\mathrm{F}(a): \mathrm{F}]$ is finite.
5. Conjugacy on a group G is an equivalence relation.

SECTION-B

(Short Answer Type Questions)

Note : Section 'B' contains Eight (08) short answer type questions of Four (04) marks each. Learners are required to answer any Four (04) questions only. $\quad(4 \times 4=16)$

1. Define
(a) Image of Homomorphism.
(b) Isomorphism
2. Prove that the conjugacy on a group G is an equivalence relation.
3. Prove that every finite group G has a composition series.
4. Define
(a) Euclidean ring.
(b) Unique factorization domain.
5. Prove that every field is Euclidean ring.
6. Show that the following mapping is not linear $t: \mathrm{R}^{2} \rightarrow \mathrm{R}^{2}$ given by $t(x, y)=\left(x^{3}, y^{3}\right)$ for all $(x, y) \in \mathrm{R}^{2}$.
7. Let K be field extension of a field F and let $\alpha \in \mathrm{K}$ be a algebraic over F . Then any two minimal monic polynomial for α over F are equal.
8. Let G_{1} and G_{2} be groups and if $\mathrm{H}_{1}=\left\{\left(a, e_{2}\right) \mid a \in \mathrm{G}_{1}\right\} \in$ then $G_{1} \times G_{2} \cong G_{2} \times G_{1}$.
