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In the beginning of 20" century, classical physics seriously
challenged on two major fronts:

validity of classical physics ceases at

1. atvery high speeds (v ~ ¢): Relativistic domain: Einstein’s
1905 theory of relativity showed that the validity of
Newtonian mechanics ceases

2. microscopic level: Microscopic domain: newly discovered
phenomena - atomic and subatomic structures — classical
physics fails.

the and that new concepts had to be invoked to describe, for

instance, the structure of atoms and molecules and how
light interacts with them.



Classical physics fails to explain microscopic
phenomena like -

* Blackbody radiation
* photoelectric effect
* Compton scattering
 atomic stability

* atomic spectroscopy



Blackbody Radiation

Light emitted by hot object

Depends only on temperature

Characteristic spectrum of light ,
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Photoelectric Effect

Shine light on some object,
electrons come out

Discovered by Heinrich Hertz, 1887
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Photoelectric Effect: Einstein

Particle model: “Light quanta” with energy
c

E = hf = h5

me minimum energy to remove electron:
“Work Function”



Photoelectric Effect: Einstein

Observations:

'- 1) Number of electrons depends on intensity

Higher intensity =» More quanta
’ §"'Energy of electrons DOES NOT depend
~ on intensity
- Only one photon to eject

”
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Compton Effect

Scattering of radiation as particles

classical physics - the incident and scattered radiation
should have the same wavelength

scattering of X-rays by free electrons —

= Wavelength of the scattered radiation is larger than the
wavelength of the incident radiation.

= This can be explained only by assuming that the X-ray
photons behave like particles.

Incident radiation as a stream of particles—photons—
colliding elastically with individual electrons

Elastic collision — conservation of energy and momentum
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Recoiling electron
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So the above examples show that some times waves behave
like particles.

But the story is not complete. There are experiments where
microscopic particles behave like waves e.g. interference and
diffraction:

1. Davisson-Germer experiment of electron diffraction.

2. G. P. Thomson experiment of electron diffraction
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Davisson—Germer Experiment
Experimental Confirmation of de Broglie’s Hypothesis

Mono-energetic (54eV) beam of electrons scattered at Nickel
surface.

Maximum intensity at © = 50°.

instead of the diffuse distribution pattern - material particles,
the reflected electrons formed diffraction patterns - identical
with Bragg’s X-ray diffraction by a grating

Electron Electron
source detector
«
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Davisson and Germer Experiment

Classyacuum
vessel

Acceleratmg
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Incident Beam

A%

40V 44V 48V 54V 60V 64V 68V

Current vs accelerating voltage has a maximum (a bump or
kink noticed in the graph), i.e. the highest number of electrons
is scattered in a specific direction.

The bump becomes most prominent for 54V at ¢ ~ 50°
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Dual nature of wave and particles

mass

“ momentum

7 Two object can’t exist together at same time and place

- Wavelength

~ Frequency

7 Two wave co-exist together at same time and place
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Wave Aspect of Particles

de Broglie’s Hypothesis: Matter Waves

In 1923 de Broglie - wave—particle duality is not
restricted to radiation, but must be universal:

all material particles possess a dual wave—
particle behavior

each material particle of momentum p behaves
as a group of waves (matter waves) whose
wavelength A and wave vector k are governed by
the speed and mass of the particle

| Sy

h -
de Broglie relation, A = ; or k =
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Matter Wave

* A wave associated with the motion of a particle e of atomic
or subatomic size that describes effects such as the diffraction
of beams of particles by crystals.




Heisenberg's Uncertainty
Principle

The uncertainty principle also called
the Heisenberg Uncertainty
Principle, or Indeterminacy
Principle, articulated (1927) by the
German physicist Werner
Heisenberg, that the position and
the velocity of an object cannot
both be measured exactly, at the
same time.




Heisenberg Uncertainty Principle

It states that only one of the “position” or “momentum” can be
measured accurately at a single moment within the instrumental
limit.

or

It is impossible to measure both the position and momentum
simultaneously with unlimited accuracy.
Ax — uncertainty in position
Ap — uncertainty in momentum

then _ h

i
Ap =2 sh=
A\Apx_z e

h
The product of Ax & Ap_of an object is greater than or equal to 5
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If AX s measured accurately ie. Ax—>0 = APX =24

The principle applies to all canonically conjugate pairs of quantities in

which measurement of one quantity affects the capacity to measure
the other.

Like, energy E and time t.

AEAL> "

and angular momentum L and angular position 6

LG >
2
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Wave Function

* |t is variable quantity that mathematically describes
the wave characteristics of a particle.

* The value of the wave function of a particle at a given
point of space and time is related to the likelihood of
the particle’s being there at the time.

* By analogy with waves such as those of sound, a wave
function, designated by the Greek letter psi, W, may be
thought of as an expression for the amplitude of the
particle wave (or de Broglie wave), although for such
waves amplitude has no physical significance.
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Physical interpretation of wave
function

The wave function, at a particular time, contains all the
information that anybody at that time can have about the
particle.

But the wave function itself has no physical interpretation.

It is not measurable. However, the square of the absolute
value of the wave function has a physical
interpretation. We interpret |(x,t)|? as a probability
density, a probability per unit length of finding the particle
at a time t at position x.

The probability of finding the particle at time t in an
interval Ax about the position x is proportional to

|b(x,t)|*Dx.
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Wave function

The quantity with which Quantum Mechanics is concemed is the
wave function of a body.

Wave function, y is a quantity associated with a moving particle. It
is a complex quantity.

|W|? is proportional to the probability of finding a particle at a
particular point at a particular time. It is the probability density.

Y =y*y
Y is the probability amplitude.
Thus if W=A+iB then WY*=A-iB
=y |2= Wy = A*—i*B% = A4*4 B?
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Normalization

|V|? is the probability density.
The probability of finding the particle within an element of volume dT

Wy P dt

Since the particle is definitely be somewhere, so

jl v |*dr =1 .. Normalization

A wave function that obeys this equation is said to be normalized.
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1=

4.

Properties of wave function

It must be finite everywhere.
If @ is infinite for a particular point, it mean an infinite large

probability of finding the particles at that point. This would
violates the uncertainty principle.

It must be single valued.
If ¢ has more than one value at any point, it mean more than

one value of probability of finding the particle at that point
which is obviously ridiculous.

It must be continuous and have a continuous first derivative

eve here.
Lind Ay Jdy oy
ox dy Oz

It must be normalizable.

must be continuous

27



Schrodinger Equation

Schrodinger equation is a linear, second order partial
differential equation.

It is a wave equation in terms of the wave function
which predicts analytically the probability of the
properties the system or events or outcome with
precision.

The Schrédinger equation is a more general and
fundamental postulate of quantum physics.

It plays the same role in quantum physics which
Newton's laws and the conservation of energy play in
classical physics i.e., it predicts the time evolution i.e.
future behavior of a quantum dynamical system.
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* An important feature of the Schrodinger
equation is that itis /inear. Hence it allows for
the superposition of its solutions i.e. wave
functions. y=ay,+by,
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* The Schrodinger equation has two forms’, one in which
time explicitly appears, and so describes how the wave
function of a particle will evolve in time. In general, the
wave function behaves like a, wave, and so the
equation is, often referred to as time dependent
Schrodinger wave equation.

* The other is the equation in which the time
dependence has been removed and hence is known as
the time independent Schrodinger equation and is
found to describe, amongst other things, what the
allowed energies are of the particle.
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The Schrodinger Wave Equation

®= The Schrodinger wave equation in its time-dependent form for a
particle of energy E moving in a potential V in one dimension is

oV(x,1) h’ 8°¥(x,1)
ot 2m  ox’

m = mass of electron
®" The extension into three dimensions is

¥ __kw (Y ¥ o'W
a  2m\ &x® oy 82’

where /= V-1 IS an imaginary number.

ih + V¥ (x,1)

J +V%¥(x,y,2,1)

The statement is in both cases that operators act on the
wave function, V = V(x,t) in the first equation for 1D, V =
V(x,y,z,t) in the second equation for 3D
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Time-Independent Schrodinger Wave
Equation

The potential in many cases will not depend explicitly on time.

The dependence on time and position can then be separated in the
Schrodinger wave equation. Let W(x,7) = w(x) f (1),

which yields: ih y(x)-

o) _ h f(’)azaV;(x)+V(x)v/(x)f(f)

ot 2m

L df()  n 1 dp(x)
J() dt 2my(x) dx’
The left side depends only on time, and the right side depends only on

spatial coordinates. Hence each side must be equal to a constant. The
time dependent side is

Now divide by the wave function: iA

+V(x)

What might this B possibly be? given the
l_ ‘_1[ fact that the Schrodinger equation is a
f dt statement on the conservation of total

energy, which is constant in a stationary
state
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Time-Independent Schrodinger Wave
Equation Continued

® We integrate both sides and find: ik I‘f{ = .[B dt  ihln f=Bt+C

where C is an integration constant that we may choose to be 0. Therefore

Bt
In/f=
/ ih
This determines fto be f(f) = eH/? g Btk What else could B possibly

. be? given the fact that the
In order to do this, f(t)needs ,, 1 df(t) _, Schrédinger equation is a
to be eigen function f(@t) di statement on the
Ty dzw(x) conservation of total energy

Se 2 +V (x)p(x) = Ey(x)

This is known as the time-independent Schrodinger wave equation, and itis a
fundamental equation in quantum mechanics.
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Stationary State

Remember when you see
E think w and vice versa

= The wave function can be written as: W(x,t) = w(x)e '”
®= Whenever the potential energy function is not time dependent

:’at)

= The probability density becomes: ¥ *W¥ = y*(x)(e"™e
PHY =y (%)

" The probability distributions are constant in time. This is a standing
wave phenomena that is called the stationary state.

E 2cazz h ) So whenever you see circular frequency omega, you can also
- think total energy divided by h-bar

= bk = 7 So whenever you see the wave number, you can also
P | A think linear momentum divided by h-bar
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Operators

* There is a linear hermitian mathematical operator in one-to-one correspondence with every mechanical
variable.

* This postulate states that for each operator there is one and only one variable, and
» for each variable there is one and only one mathematical operator.

* Amathematical operator is a symbol that stands for performing one or more
mathematical operations.

* When the symbol for an operator is written to the left of the symbol for a function, the
operation is to be applied to that function.
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* The result of operating on a function with an operator is another
function. If Ais an operator and f is a function,

A flg) = glq)

* Where g is another function. The symbol q is an abbreviation for
whatever independent variables f and g depend on. shows an
example of a function, f(x)=In(x),

» and the function g(x)=1/x that results when the operator d/dx is
applied to In(x).
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Expectation Values, what one will measure on
average is derived from correct wave function for a problem

® The expectation value is the expected result of the average of

many measurements of a given quantity. The expectation value
of x is denoted by <x>

= Any measurable quantity for which we can calculate the

expectation value is called a physical observable. The
expectation values of physical observables (for example,
position, linear momentum, angular momentum, and energy)
must be real, because the experimental results of
measurements are real.

® The average value of x is

2Nx,
Nix, + Noxy + Noxy, + N x, +... 5
N,+N,+Ns+ N, +... YN,

I
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Continuous Expectation Values

= We can change from discrete to j‘ * xP(x) dx
continuous variables by using the _ J-
probability P(x,f) of observing the »
particle at a particular x and t. QP (x) dx
® Using the wave function, the J‘m XV * (x.)W(x.1) dx
expectation value is: x) = 9-m i i
)= | Wi 1 di _[ W * (. )W(x.1) dx

" The expectation value of any o
function g(x) for a normalized wave g(x) = I PH(x0g(x)¥ (x,1) dx
function:

x and g(x) are operators !!!, x could also have been in the middle of
— conjugant complex wave function times wave function as it the rule
for all operators



Some quantum-mechanical operators

' Symbol

Physical quantity

Operator

fix)

Any function of x—e.g.. the position x,
the potential energy Vix), etc.

x component of momentum
y component of momentum

Z component of momentum

Hamiltonian (time independent)
Hamiltonian (time dependent)
Kinetic energy

2 component of angular momentum

fix)

T P=—ih_
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Eigenstates and eigenvalues

If measurement of any physical quantity by a corresponding operators on
a wave function is such that

Ay =ay
then ¥ iscalled an eigenstate (or eigenfunction) of operator A
with eigenvalue a. These are called determinate states of that operator or
physical quantity. Since every physical measurement that is made upon
this state by that operator would yield the same value or accurate value of
associated physical quantity.
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APPLICATIONS OF SCHRONDINGER
EQUATION
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Particle in a Box
Consider a particle of rest mass m enclosed in a one-dimensional

box (infinite potential well). V=00 V =oo
Boundary conditions for Potential | :
0 for 0<x<L 3 ,
V(x)= { particle
> for 0>x>L ®
Boundary conditions for g V=0
0 for x =0

W= { x=0  x=L
0O for x=L

Thus for a particle inside the box Schrodinger equation is
W  2m
+

Ewv =0 ' -V =0 inside
352 72 4 (i)
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p k
,/2 E
=.Jc= ! m
h h
= k° = zij (iil)
h...
Equation (i) becomes
a-v,/ +ky =0 (iii)
ox~

General solution of equation (iii) is

W(x)=Asinkx+ Bcoskx (iv)

(k is the propagation constant)
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Boundary condition says w =0 when x =0
v(0)=Asink.0+ Bcosk.0
0=0+B.1 = B:=)

Equation (iv) reduces to
W (x)= Asin kx (V)
Boundary condition says y =0 whenx =L
Ww(L)= Asink.L
0= Asink.L
A#0 =smkL=0
= sink.L =sinnrx
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kL =nrx

-
L
Put this in Equation (v) -
w(x) = Asin —”L

Whenn#0i.e.n=1, 2, 3...., this gives @ = 0 everywhere.

Put value of k from (vi) in (ii)

(Vi)

45



= Fr= —hbka = n"h“z (vii)
2m 8&m L

Wheren= 1, 2, 3....
Equation (vii) concludes

1. Energy of the particle inside the box can’t be equal to zero.
The minimum energy of the particle is obtained for n = 1

)

E =

= Zero Point Ene
8m L~ ( "ay)

If £, >0 momentum — 0 ie. Ap—0

= Ax —> o

Bllx_ =L since the particle is confined in the box of
dimension L.
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Thus zero value of zero point energy violates the

Heisenberg's uncertainty principle and hence zero value is
not acceptable.

2. All the energy values are not possible for a particle in
potential well.

Energy is Quantized

3. E, are the eigen values and ‘n’ is the quantum number.

4. Energy levels (E,) are not equally spaced.
n=3 E
3
n=2 E2
n=1
E,
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Physical boundary condition

Boundary conditions of the potential dictate that the wave function must
be zero at x = 0 and x = L. This yields valid solutions for integer values of
n such that kL = nrr.

The wave function is now ¥, (x) = Asin(n;tx)

-

We nommalize the wave function

o0 o L
j v, (O, (x)dc=1 A* j sinz(mtx) dx =1
= 0
The normalized wave function becomes

2 . [nxx
Wn(x) — \/;SIH(L)

These functions are identical to those obtained for a vibrating string with
fixed ends.
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Quantized Energy

= The quantized wave number now becomes &, = o : ’g%fﬂ

®= Solving for the energy yields -
g an? X 123
b =8 —= n=12>:,...
z 2ml’ ( )
= Note that the energy depends on the integer values of n. Hence the

energy is quantized and nonzero.

2,2
: . "
" The special case of n = 1 is called the ground state energy. £, =
% . 2ml’
Energy
" Idv..‘g"" L ) + nergy - Ground
-y 25 E, state
¢-. |d‘»[‘. energY.
- - lh ”’l .
" zero point
9L
¥, Id’l’h‘. 4 E: enerQY:
E, there is

0 L 0 f J

Position

non=0

B R The—
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Finite Square-Well Potential

Ve x<0 region |
®= The finite square-well potentialis ¥(x)={ 0 0O<x</Z regionll
Vo x=L region 11

Vix)
Vo

Region | | Region 11 | Region 11

0

0 L

Position
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Finite Square Well

* Inregions | and Il

d;? —kiy, =0wherek, =k, = sz(\;" —E)
* |nregion ll
d;‘(”z" +K2y, =Owherek, =k = %
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Finite Square Well

 Solutions in region | and Il

Ae** + Be ¥ — Ae”
Eeklux + Fe—kulx AN Fe_klllx

 Solutions in region I
Ce™ + De ™ or
Csinkx+ D coskx

52



Finite Square Well

* The next step Is to match boundary conditions
inside and out for both y and dy/dx
— At x=0

A=D
k A=kC

— At x=L
Fe ™" =CsinkL+ DcoskL
—k,Fe™" =Ck coskL — DksinkL
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Finite Square Well

— As with the infinite well, application of the
boundary conditions leads to energy quantization

— Although there are 4 equations for 4 unknowns
the energy levels must be found numerically or
graphically

— As with the infinite well, the n’th eigenfunction
will have n-1 nodes
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Finite Square Well

E Wave function

Esq gExponcntial

/\ )
Eo -\\/
E, : lﬁ./_\ 2

010 L 0 L

Position Position

& 2006 Brooks/Cole - Thomsaon

55



Penetration Depth

®" The penetration depth is the distance outside the potential well where
the probability significantly decreases. It is given by

. h
0 R—=
" a \2m({,-E)

®= |t should not be surprising to find that the penetration distance that
violates classical physics is proportional to Planck’s constant.
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Harmonic Oscillator

* The (simple) harmonic oscillator is one of the
most important physical systems in physics
— Any physical system in the neighborhood of a
stable equilibrium position can be approximated

by a harmonic oscillator (in the limit of small
oscillations)

— Vibrations of atoms in a molecule, oscillations of
atoms in a crystal, ...
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The Classical Linear Harmonic Oscillator

Classical mechanical problems are very often solved by introducing the so-called
Hamiltonian, which is defined as:

2

H(x, p)=§—m+V<x)

The classical linear harmonic oscillator has the following Hamiltonian:

p2 2
H(X, p):ﬂ-i_ 2

Where the frequency of the oscillator is:

a)=27zv=\/E
m
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The Classical Linear Harmonic Oscillator

The trajectory x(t), p(t) of the oscillator is obtained by solving Hamilton’s
equations of motion:

oH(x,p) _ dp(t) OH(x, p) _ dx(t)
ox op  dt

The solution is (homework) (A is the amplitude of the motion)

X(t) = Acos wt p(t) = —wmAsin wt

We can introduce a quantum mechanical Hamiltonian as:

h® d?
H=- +V (X
8mz? dx? (x)

The Time-Independent Schroedinger Equation can be written:

Hy (x) =Ew(X)
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Quantum Mechanical Linear Harmonic Oscillator

The quantum mechanical treatment of the linear harmonic oscillator (LHO) is one
of the most important applications of quantum mechanics

The LHO is used as a simple approximation to molecular bond vibrations and
rotations, for example, and forms the basis of much spectroscopy.

The time-independent Schroedinger equation for the LHO is:

h*> 0%y wx* h> 0%y mae’x?
— — _ +
aim ox? 2 VI =Ev(X) 82lm ox’ | 2

w(x) =Ey(X)

0%y (q)
oq°

2 J—
This equation may be rewritten as: — 97w (a) =y (X)

27vm 4rE
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Quantum Mechanical Linear Harmonic Oscillator

0’y (q)
oq’

—9°w () =y (X)

Although there are no solid boundary conditions as there was with the particle in
the box, the wave function is localized in the sense that is must approach zero as X
increases toward infinity. This just means that the probability of finding the
particle must decrease as we move toward very large extensions.

The solution to Schroedinger’s equation for the LHO is

vo(@=Ae T H (@) H@=(De o)

A is a constant and H_(q) is called a Hermite polynomial of the nt" order
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Quantum Mechanical Linear Harmonic Oscillator

TR dv@= 0y (@=AeTH, @) MO k)

H, (=1 Hi(@=2a  H,(q)=49"-2 q=xJa

As with the Particle-in-a-Rox, the probability of finding a particle at
q=xJa

P=ly(q)|

+00

By requiring that: f

—0o0

w,(q)| dg=1

We find: Aq—( 1 T’Z
- 2"niJr

Finally: WH(X)Z(Z”:}/E/ZJ e_alean(X\E)
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Quantum Mechanical Linear Harmonic Oscillator

0%y (q)
oq’

~ (@) = (9 %(X)Z(Zf fj e H, (xa)
1R EVV/4

The energy has the form:

5=%=2n+1

hw

1
E =hv(n+—
' ( 2)

Note this is shifted by hv/2 from Planck’s energy. This is called the zero point energy,
the existence of which is required by the Heisenberg Uncertainty Principle.
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Quantum Mechanical Linear Harmonic Oscillator

v, (X)= (2”:1/!;\/;} e“”z’an (X\E)

It is interesting to calculate probabilities P (x) for finding a harmonically oscillating
particle with energy E_ at x; it is easier to work with the coordinate q; for n=0 we
have:
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Quantum Mechanical Linear Harmonic Oscillator

Probabilities: P(q) for n=0,1,2
0.6
o 7\ — =0
& 03 A B,
0.2 _
0.1 VAR ERNAN =2
0 T AR

L IR R VI
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Quantum Mechanical Linear Harmonic Oscillator

Potential well, wave functions and probabilities:

U

+X

o

-Xx 0 +x - 0 +X —%

(a) (b) (c)
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Quantum Mechanical Linear Harmonic Oscillator

Potential well, wave functions and probabilities:

U

As the quantum number gets larger, the probability increases towards larger
displacement values. This corresponds to a classical phenomenon, as the energy of an
oscillator increases, motion becomes more extended away from the status of lowest

energy. The fundamental frequency of the oscillator is also the same both classically
and in guantum mechanics:
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Quantum Mechanical Linear Harmonic Oscillator

Potential well, wave functions and probabilities:

The fundamental frequency of the oscillator is also the same both classically and in
guantum mechanics:

There are however several differences between classical and quantum mechanics
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Quantum Mechanical Linear Harmonic Oscillator

Potential well, wave functions and probabilities:

the first is that there is motion even in the lowest energy state (see the shape of the
probability for n=0); the second is that the wave function extend beyond the classical
limits for the motion in a region of space where the potential is very large and that
are not expected to be observed classically. The term 1/2hv is called zero point energy.
This states that an oscillator cannot be at complete rest; if it was at rest, we would
know the momentum (p=0) and position precisely; the zero point energy allows

Heisenberg’s principle not to be violated. What that means is that molecules or solids
vibrate even at 0 degree K.
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