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So the above examples show that some  times waves behave 

like particles.

But the story is not complete. There are experiments where 

microscopic particles behave like waves e.g.  interference and 

diffraction:

1. Davisson-Germer experiment  of electron diffraction.

2.  G. P.  Thomson  experiment of electron diffraction 
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Dual   nature  of  wave  and  particles
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Operators
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Eigenstates and eigenvalues

If  measurement of  any physical quantity by a corresponding operators on 

a wave function is such that 

then         is called an  eigenstate (or eigenfunction) of  operator         

with eigenvalue . These are called determinate states of  that operator or 

physical quantity. Since every physical measurement  that is made upon 

this state by that operator would yield the same value or accurate value of 

associated physical quantity. 
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APPLICATIONS OF SCHRÖNDINGER 

EQUATION
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Finite Square Well

• In regions I and III

• In region II
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Finite Square Well

• Solutions in region I and III

• Solutions in region II
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Finite Square Well

• The next step is to match boundary conditions 

inside and out for both ψ and dψ/dx

– At x=0

– At x=L
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Finite Square Well

– As with the infinite well, application of the 
boundary conditions leads to energy quantization

– Although there are 4 equations for 4 unknowns 
the energy levels must be found numerically or 
graphically

– As with the infinite well, the n’th eigenfunction 
will have n-1 nodes
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Finite Square Well
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Harmonic Oscillator

• The (simple) harmonic oscillator is one of the 
most important physical systems in physics

– Any physical system in the neighborhood of a 
stable equilibrium position can be approximated 
by a harmonic oscillator (in the limit of small 
oscillations)

– Vibrations of atoms in a molecule, oscillations of 
atoms in a crystal, …
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The Classical Linear Harmonic Oscillator 

Classical mechanical problems are very often solved by introducing the so-called 

Hamiltonian, which is defined as: 

The classical linear harmonic oscillator has the following Hamiltonian: 

)(
2

),(
2

xV
m

p
pxH 

22
),(

22 x

m

p
pxH




Where the frequency of the oscillator is:
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The Classical Linear Harmonic Oscillator 

The trajectory x(t), p(t) of the oscillator is obtained by solving Hamilton’s 

equations of motion: 

The solution is (homework) (A is the amplitude of the motion) 

We can introduce a quantum mechanical Hamiltonian as:
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The Time-Independent Schroedinger Equation can be written: 
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Quantum Mechanical Linear Harmonic Oscillator 

The quantum mechanical treatment of the linear harmonic oscillator (LHO) is one 

of the most important applications of quantum mechanics

The LHO is used as a simple approximation to molecular bond vibrations and 

rotations, for example, and forms the basis of much spectroscopy. 

The time-independent Schroedinger equation for the LHO is: 

This equation may be rewritten as: 
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Quantum Mechanical Linear Harmonic Oscillator 

Although there are no solid boundary conditions as there was with the particle in 

the box, the wave function is localized in the sense that is must approach zero as x

increases toward infinity. This just means that the probability of finding the 

particle must decrease as we move toward very large extensions. 

The solution to Schroedinger’s equation for the LHO is 

An is a constant and Hn(q) is called a Hermite polynomial of the nth order
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Quantum Mechanical Linear Harmonic Oscillator 

As with the Particle-in-a-Box, the probability of finding a particle  at

By requiring that: 
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Quantum Mechanical Linear Harmonic Oscillator 

The energy has the form: 

Note this is shifted by h/2 from Planck’s energy. This is called the zero point energy, 

the existence of which is required by the Heisenberg Uncertainty Principle. 
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Quantum Mechanical Linear Harmonic Oscillator 

It is interesting to calculate probabilities Pn(x) for finding a harmonically oscillating 

particle with energy En at x; it is easier to work with the coordinate q; for n=0 we 

have: 
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Quantum Mechanical Linear Harmonic Oscillator 

Probabilities: P(q) for n=0,1,2
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Quantum Mechanical Linear Harmonic Oscillator 

Potential well, wave functions and probabilities: 
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Quantum Mechanical Linear Harmonic Oscillator 

Potential well, wave functions and probabilities: 

As the quantum number gets larger, the probability increases towards larger 

displacement values. This corresponds to a classical phenomenon, as the energy of an 

oscillator increases, motion becomes more extended away from the status of lowest 

energy. The fundamental frequency of the oscillator is also the same both classically 

and in quantum mechanics: 
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Quantum Mechanical Linear Harmonic Oscillator 

Potential well, wave functions and probabilities: 

The fundamental frequency of the oscillator is also the same both classically and in 

quantum mechanics: 




 0

There are however several differences between classical and quantum mechanics

68



Quantum Mechanical Linear Harmonic Oscillator 

Potential well, wave functions and probabilities: 

the first is that there is motion even in the lowest energy state (see the shape of the 

probability for n=0); the second is that the wave function extend beyond the classical 

limits for the motion in a region of space where the potential is very large and that 

are not expected to be observed classically. The term 1/2hv is called zero point energy. 

This states that an oscillator cannot be at complete rest; if it was at rest, we would 

know the momentum (p=0) and position precisely; the zero point energy allows 

Heisenberg’s principle not to be violated. What that means is that molecules or solids 

vibrate even at 0 degree K. 

69



THANK YOU 

70


