
Energy Band Theory of Solids 

 

## in free electron model of metals assumes the conduction electrons to move freely in a 

region of constant potential or zero potential without interacting with the crystal lattice 

# this model explains certain properties of metals, such as conductivity, sp heat, etc but 

fails to explain other properties of solids in general, hence it needs to modified 

 In fact an electron in a solid moves in a region of periodic varying potential, 

caused by positive ion cores situated at the lattice points, plus the average effect 

of all other free electrons 

 This results in the diffraction of electrons by the lattice 

 When the de Broglie wavelength of the electrons corresponds to a periodicity in 

the spacing of the ions 

-the electron interacts strongly with the lattice 

-and undergoes bragg reflection 

We solve the Schrödinger equation for an electron in a crystal lattice to find the allowed 

energies.  

--Let us consider a one dimensional crystal lattice, actual potential as shown in figure 

--kronig penny suggested a simplified model potential consisting of an infinite row of 

rectangular potential wells separated by barriers of width b 

--with the space periodicity a 

-- each well represents a potential produced by ions  

 

Plane wave function  ( ) ikx

k x e  is modified by the periodic potential to be of the 

form ( ) ( ) ikx

k kx u x e  .   

Where ( ) ( )k ku x u x a 
  ( Bloch Function)

 

 



 

 

 

 

On solving Schrodinger equation of the electron for the Kronig Penney potential under the 

condition that   and /d dx  must be continuous at the boundaries of the well, a complicated 

expression for the allowed energies in terms of k of the electron is obtained which shows that the 

gap in the energy occur at values given by 
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Figure shows the relationship between energy  and wave number k for a one dimensional 

lattice. The dashed curve is the free electron parabola ( when there no potential, KE =p
2
/2m, or 
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At the above value of k we get energy gap, whereas for values of k not near these values the 

energy are much like that of free electron. The origin of the allowed energy bands are forbidden 

gaps are seen in figure.  



 

 

 

 

The occurrence of gaps can be understood in terms of Bragg reflection. The Bragg’s condition is 

 

2 sina n   

Where a is the spacing between the ions of the lattice. Since we are considering the lattice in one 

dimension only, the above equation becomes 
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These are just the values of k at which the gaps in the k  curve occur. The waves 

corresponding to values of k not satisfying the above condition travel almost freely and those 

satisfying the condition are reflected resulting in standing waves.  

 

The wave function associated with Kronig Penney model may be calculated on solving 

Schrodinger wave equation. We  have S E  
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2

02 2

2
( ) 0

d m
E V

dx


  

h
 for  -b < x < 0 

Or we can write 
2

2

2
0

d

dx


  

  (2)
 

Where 
2

02

2
( )

m
V E  

h  

As the potential is periodic, the wave function must have the Bloch form 

( ) ( )ikxx e u x 
    (3) 

Where u( ) u(x a)x     

If 1u ( )x and 2u ( )x   represent the value of ( )u x
  

-in two different regions 

Then above equations may be written as 

Differentiating eq (3)  
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Again differentiating 
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Putting these values in eq (1) 
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Or simplifying, we get 
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Similarly, we get 
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The solution of these equations may be written as 
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Here A B C D are constant to be determined by the boundary conditions. 

  and /d dx to be continuous throughout the crystal. 
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Now applying the boundary conditions we get the following relations 
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Determinant coefficient must be zero For non vanishing solution 

On simplifying these equation one can get 
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This equation is quite complicated; however we must draw some conclusions 

To solve above equation, Kronig Penney supposed that the potential energy is zero at lattice sites 

and equal V0 inside. Also assumed that, as the height of the potential barrier V0 tends to infinity 

and the width of the barrier b tends to zero so that the product V0 b remains finite. Under these 

assumptions 

sinh b b   

cosh 1b   as 0b  

Therefore 
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Hence on solving we get 
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Or, cos (sin / ) coska P a a a     
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This is the condition for the solutions of the wave equation to exist. As you see that this is 

satisfied only for those value of a  for which its left hand side lies between +1 and -1. It is 

because its right hand side must lie in range. Such values of a represent the wave like solution 

and are reachable. On the other hand, the other values of a  will be inaccessible. The 

significances of this can be agreed very well by the figure. The part of vertical axis lying 

between the horizontal lines represents the range acceptable. Since 
2 is proportional to the 

energy so a  will be measure of energy. It is clear that the region for a  where the value of 

sin / cosP a a a    does not lie between -1 and +1. Therefore, these values of a and 

henceforth of energy E, there is no solution. Such region of energy is disallowed and is named 

forbidden bands. This analysis led to the following  



The energy spectrum of the electron consists of alternate regions of allowed energy that is 

continuous band and forbidden energy band. Usually these bands are referred as allowed and 

forbidden energy bands. 

1. As the value of a increases the width of the allowed energy bands increases. 

2. The quantity P, which is noted as a measure of potential barrier strength. If P is large, means 

the potential barrier V0 b is large. For the infinite deep well the electron can be considered as 

confined into a single potential well. It is applied to the crystals where the electrons are very 

tightly bound with their nuclei.  

3. In second case, when P is small, the barrier strength is small that is 0P , the electron can 

be considered to be moving freely through the potential well. It is the case of crystal where 

the electron is almost free of their nuclei.  

4. Hence we conclude that the width of particular allowed band decreases as P increases. 

As P , the allowed bands are compressed into energy levels and the energy spectrum is 

thus a line spectrum. Whereas 0P , we have the free electron model of the energy 

spectrum. It is known as continuous. In between these limits, the position and the width of 

the allowed and forbidden bands for any value of P are obtained. 

5. To calculate the energy spectrum in extreme cases ( P),  then we have 
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It is the physically expected result because the large P makes the tunneling through the barrier 

nearly unlikely.  

In second case when 0P  

We get cos cosa ka   

Which implies k   

Or, 
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This shows that the allowed energy states of electrons are continuous.  

 

 



Ex: Show that for the Kronig Penney potential with 1P  , the energy of the lowest energy band 

at k=0 is given by 
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Solution: for k=0  sin / cos cosP a a a ka    becomes  

sin / cos 1P a a a     

Or we may write  
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On expanding sine and cosine function 
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