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1.1 INTRODUCTION 
Dear learners, in lower classes, you have seen that when we rub two bodies together, the both 

bodies begin to attract light bodies like cotton, straws, and feathers of birds or small pieces of 

paper. Such experiences were studied byancient Unani philosopher Thales about 2500 years 

back. When he rubbed amber with woolen cloth, amber acquires the property of attracting light 

bodies. When a glass rod is rubbed with silk, it also acquires the same property of attracting light 

bodies. When a body acquires such type of property, it is said to be electrified or the body is said 

to be charged electrically. In Unani language amber is said to be electron and the energy due to 

which amber acquires the property of attracting light bodies is called electricity. When we rub 

any solid material with another material under suitable conditions, it gets charged electrically. 

The process of acquiring charges by bodies when they are rubbed with each other is known as 

frictional electrification.  

It is found experimentally that there are of two types of charges- positive charge and negative 

charge. In fact, when we rub two bodies with each other, there is a transfer of electrons from one 

body to another.  The body which loses its electrons becomes positive (positively charged) and 

the body which gains electrons from first body becomes negative (negatively charged). Thus, 

there are of two charges i.e. positive charge and negative charge. The magnitude of charges on 

each body depends on the number of transferred electrons. The names positive and negative 

charges were given by an American Scientist named Benjamin Franklin in 1750. The names of 

positive and negative charges are purely conventional.  

In this unit, the learners shall study the various properties of charges, experiment showing the 

quantization of charge i.e. Millikan’s oil drop experiment, Coulomb’s law and its applications. 

1.2 OBJECTIVES 

After studying this unit, you should be able to- 

 know about charges and their properties 

 learn quantization of charge 

 learn about Millikan’s oil drop experiment 

 know about Coulomb’s law and their applications in daily life 

 solve problems using the theory of Millikan’s oil drop experiment 

 apply Coulomb’s law  

1.3 PROPERTIES OF CHARGES 

We know that charges have peculiar properties. Let us know about these properties of charges- 

(a) Like charges repel and unlike charges attract. 

(b) A charged body attracts to uncharged (neutral) bodies due to electrostatic induction.  
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(c) Charge on a body remains unaffected by motion i.e. the charge on a body or particle 

remains the same whether it is at rest or moving with any velocity. 

(d) The electric charge is additive. It means that the total charge on an extended body is the 

algebraic sum of the charges located at different points in the body. If a body has positive 

and negative charges both, then the net charge of the body is the algebraic sum of all the 

charges i.e. Q = Ʃ q. A neutral body has equal amount of positive and negative charges so 

that the charge on a neutral body is always zero. 

(e) Charge is conserved i.e. it can neither be created nor destroyed but it may simply be 

transferred from one body to another body. 

(f) Charge is quantized i.e. any physically existing charge is an integral multiple of the 

elementary charge (e). 

Now, we shall discuss the properties of conservation of charge and quantization of charge in 

detail. 

1.3.1 Conservation of Charge 

Charge can neither be created nor destroyed but it may simply be transferred from one body to 

another body. This is known as conservation of charge or principle of conservation of charge. 

The principle of conservation of charge may also be stated as “The net charge of an isolated 

system remains constant.” Charge is conserved in every physical and chemical process. 

1.3.2 Quantization of Charge 

“Charge is created by transfer of electrons; therefore the net charge on a body is always an 

integral multiple of magnitude of charge on an electron.” 

We know that the charge on a body is produced due to excess or deficiency of electrons. Electron 

cannot be divided into further smaller parts. Therefore, charge on a body is integral multiple of 

the amount of charge on electron. This smallest amount of charge is 1.6x 10-19 coulomb and is 

denoted by ‘e’. The magnitude of charge on an electron is called the fundamental charge or 

elementary charge. Therefore, we can say that any physically existing charge is always an 

integral multiple of fundamental charge ‘±e’ i.e. all existing charges are found to be ‘ne’ (where 

n is a positive) such as e, 2e, 3e,……………., -e, -2e, -3e,……….. Mathematically, we can write 

q = ± ne, where ‘n’ is integer, n = 1, 2, 3,……… and ‘e’ is a positive quantity equal to + 1.6x 10-

19 coulomb. ‘e’ is also known as the quantum of charge. No charge is found in the fraction of e 

(as 0.5 e or 0.7 e or 2.7 e…… etc.). It means that electric charge cannot be divided indefinitely. 

This property of charge is called ‘quantization’ or ‘atomicity’ of charge. 

The charges of some natural elementary particles are as follows- 

charge of electron: -e, charge of proton: +e, charge on α-particle: +2e 
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The value of the elementary charge is so small that we do not experience the quantization of 

charge in daily life. Millikan’s oil drop experiment and many other experiments confirm the 

quantum nature of charge. 

1.4 MILLIKAN’S OIL DROP EXPERIMENT 

This is the experiment which confirms the quantum nature of charge. Let us discuss Millikan’s 

oil drop experiment.  

In 1909, Millikan performed a series of experiments to demonstrate the existence of elementary 

charge. He used tiny oil drops while latter on plastic spheres of known mass were used instead of 

oil drops. 

The apparatus consists of two parallel metallic plates P1 and P2 connected to +ve and –ve 

terminals of a battery through potential divider as shown in figure 1. The observations are taken 

with the microscope; hence the spheres (plastic balls) are illuminated by intense light. 

 

 

 P1 qE 

                                                                                    E                                              d 

 mg 

 P2 

                                                V 

 

 

 

                                                                          Figure 1 

The plastic balls are charged by friction and are thrown between two plates through a tube by a 

blower. At first, when the key is open, these spheres start falling due to force of gravity. Since 

their masses are equal and an equal viscous force due to air acts on them, all spheres have the 

same constant velocity called terminal velocity. Now, the key is closed, the plates P1 and P2 are 

charged and an electric field between plates P1 and P2 is established. Now the charged spheres 

experience two forces- 
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1. Force of gravity  

2.  Electric force 

If lower plate is connected to the +ve terminal of battery, the direction of electric field is upward 

and therefore an electric force due to this field acts upward. Since the charge on the spheres is 

different they experience different electric force. 

We can adjust the electric potential by potential divider and establish equilibrium. Thus in the 

condition of equilibrium, the two forces are equal in magnitude but opposite in direction. 

If the mass of the sphere is ‘m’ and charge ‘q’, then we have- 

qE = mg                                                                                                                                   …..(1) 

If the two plates P1 and P2 are separated by a distance d and the potential difference between 

them is V, then electric field E = V/d         

From equation (1), q V/d = mg 

or  q = mgd / V                                                                                                                        …..(2) 

But mgd = constant, since the masses of all spheres are same 

Therefore, q ∝
1

V
                                                                                                                      …..(3) 

or qV = constant                                                                                                                      …..(4) 

Various potentials are applied to balance the spheres of different charge. If spheres have charges 

q1, q2, q3,………., then corresponding potentials are V1, V2, V3, ……, hence  

q1V1= q2V2 = q3V3…………..= constant 

Since 
1

𝑉
 is proportional to charge q of the ball, the ratio 

1

V1
,

1

V2
,

1

V3
 ………… are in integral 

multiple ratio. Obviously, the charge on each ball is integral multiple of minimum value. That 

minimum value of charge is electronic charge ‘e’. 

Thus q= ne                                                                                                                               …..(5) 

or 
q

e
 = n (an integer) 

Thus Millikan’s oil drop experiment confirms the quantum nature of charge. 

Example 1:  A plastic piece rubbed with wool is found to have a negative charge of 5 x10-7 

coulomb. Calculate the number of electrons transferred. 

Solution: Given q= 5 x10-7 coulomb 
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Using q = ne, we get- 

n = 
q

e
 = 

5×10−7

1.6×10−19 = 3.125 x 1012 

Example 2: In Millikan’s oil drop experiment the charge on any three drops was found to be 

1.6x10-19, 4.8x10-19 and 9.6x10-19 coulomb. What is the conclusion of these results? 

Solution: The given charges on the drops are- q1= 1.6x10-19coulomb, q2 = 4.8x10-19 coulomb= 3x 

1.6x10-19coulomb, q3= 6x 1.6x10-19 coulomb 

Obviously, the maximum common factor among the given charges is 1.6x10-19coulomb and this 

is the minimum possible charge. Therefore, the elementary charge = 1.6x10-19coulomb. 

Also, all given charges are integral multiples (i.e. 1 times, 3 times and 6 times) of elementary 

charge. This confirms the quantum nature of charge. The conclusion of these results is that 

elementary charge is 1.6x10-19coulomb and charge is quantized. 

Self Assessment Question (SAQ) 1: Wool rubbed with a polythene piece is found to have a +ve 

charge. State from which to which the transfer of electrons took place. Is there a transfer of mass 

from wool to polythene or vice versa? 

Self Assessment Question (SAQ) 2: A oil drop of mass 5 gm is hanging in equilibrium between 

two charged plates as shown in figure. Calculate the magnitude and nature of charge on the drop. 

 

   

                     50 V        Oil drop                                      10 cm 

 

  

1.5 COULOMB’S LAW 

You have read in the previous sections that two like charges repel each other and two unlike 

charges attract each other. Thus, we can say that a force acts between two charges. This force is 

known as ‘electric force’. The electric force between like charges is repulsive and that between 

unlike charges is attractive.  

In 1785, Coulomb, on the basis of experiments, stated a law regarding the force acting between 

two charges. According to this law, “The force of attraction or repulsion between two point 

charges is directly proportional to the product of the charges and inversely proportional to the 
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square of distance between them. The direction of this force is along the line joining the two 

charges”. This law is called Coulomb’s inverse square law. 

 

                                       q1                                                                 q2 

             r 

 

                                                                         Figure 2 

If two point charges q1 and q2 are separated by a distance r, then the force F acting between them 

is given by- 

F ∝
q1q2

r2
 

   F = k
q1q2

r2
      …..(6) 

Where, k is proportionality constant, whose value is given by
1

4πε0
, if the charges are placed in 

vacuum (or air). If the charges, distance and the force are measured in coulomb(C), meter (m) 

and Newton(N) respectively, then 
1

4πε0
 = 9 x 109 N-m2/C2. The constant 휀0 is read as epsilon zero 

and called ‘permittivity of free space’. Its value is 8.85x 10-12 C2/N-m2. 

If q1 = q2 = 1 coulomb and r = 1 meter, then from equation (6), we get- 

F = 9 x 109x 
1×1

12  = 9 x 109 Newton  

Hence, 1 coulomb is that charge which, when placed at a distance of 1 meter from an equal and 

similar charge in vacuum (or air), repels it with a force of 9 x 109 Newton.  

If charges are placed in a medium like glass, wax, paper etc., then the force between the charges 

is given by- 

                                                             F = 
1

4πε

q1q2

r2
                                                               …..(7) 

where ε is called the absolute permittivity of the material medium and is equal to Kε0 i.e. ε = 

Kε0, where K is a dimensionless constant known as the dielectric constant or relative permittivity 

or specific inductive capacity of the material and the material is called dielectric.  

We can write the equation (7) as- 

F = 
1

4πε0K

q1q2

r2
                                                                                                                         …..(8) 
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For all dielectrics the value of K is greater than 1. Obviously, we can see that if there is a 

dielectric between the charges, then the electric force between the charges decreases. For metals 

K is infinite and for water K= 81 

In vector form, we can write – 

1 2
12 2

0

1
ˆ

4

q q
F r

r
 …..(9) 

where r^  is the unit vector along r→.  

r^12A                                                 B     r^21 

F12 q1                                                                          q2F21 

                                                                                    r 

                                                                                  Figure 3 

Let us consider two point charges q1 and q2  are placed at points A and B respectively and the 

distance between them is r. 

The force exerted on charge q1  due to charge q2 can be written as- 

 

1 2
12 122

0

1
ˆ

4

q q
F r

r
   …..(10)    

(Since r12
^ = 

r12
→

r
, the unit vector along B to A i. e. along position vector r12

→ ) 

Similarly, the force exerted on charge q2 due to charge q1can be written as- 

F⃗ 21 = 
1

4πε0

q1q2

r2
r21

^ 

                                                                 = 
1

4πε0

q1q2

r3
r21
→                                                      …..(11)     

But r12
→  = - r21

→ , therefore equation (11) can be written as- 

F⃗ 21 = −
1

4πε0

q1q2

r3
r12
→        …..(12) 

Comparing equations (10) and (12) we get- 

F⃗ 12 = −F⃗ 21 
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It means that Coulomb’s force exerted on q1 by q2 is equal and opposite to the Coulomb’s force 

exerted on q2 by q1 ; in accordance with Newton’s third law. Thus, Newton’s third law also holds 

for electrical forces. 

1.5.1 Conditions of Validity of Coulomb’s Law 

In the previous section, you have seen that Coulomb’s law between two point charges is an 

inverse square distance law. It holds only for point charges and spherical charges at sufficient 

separation, assuming the charge to be concentrated at their centres, however, it may be applied to 

extended objects provided the distance between them is much larger than their dimensions. Both 

charges must be point charges i.e. the extension of charges should be much smaller than the 

separation between the charges. The separation between the charges must be greater than nuclear 

distance (10-15 m) because for distances less than 10-15 m, the nuclear attractive forces become 

dominant over all other forces.  

1.5.2 Importance of Coulomb’s Law 

Dear learners, as you know that Coulomb’s law is true for point charges separated by from very 

large distances to very small distances such as atomic distances (≈ 10-11m) and nuclear distances 

( ≈ 10-15 m). Therefore, it is not only gives us the force acting between charged bodies but also 

helps in explaining the forces which bind electrons with nucleus in an atom, two or more atoms 

in a molecule and many atoms or molecules in solids and liquids. In our daily life, we experience 

many forces which are not gravitational but are electrical. The particles in the nucleus (protons 

and neutrons) of an atom are bound together by a very strong attractive force named as the 

nuclear force. This force neither depends upon whether a particle is charged or uncharged nor it 

has any relation with the Coulomb’s law. But it does not mean that the protons in the nucleus do 

not have Coulomb’s electrical repulsive force between them. The electrical repulsive force is 

there, although it is negligible in comparison to the nuclear attractive force, and plays a vital role 

inside the nucleus. If this force would not have been there, the heavy nuclei would not have been 

radioactive and the heavy elements beyond uranium (which are unstable) would have been 

stable. 
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1.5.3 Comparison of Coulomb’s Force and Gravitational Force 

In addition to Coulomb’s force, gravitational force also acts between two charged bodies. The 

comparison between Coulomb’s force and Gravitational force is tabulated below- 

S. No. Coulomb’s force Gravitational force 

1. The Coulomb’s force (electrical 

force) between two charged bodies of 

charges q1 and q2 at separation r is 

given as- 

Fe = 
1

4πε0K

q1q2

r2
 

The gravitational force acting between two 

bodies of masses m1 and m2 at separation r 

is given as- 

1 2

2g

Gm m
F

r
 , where G is known as 

Universal Gravitational Constant and G = 

6.67 x 10-11 N-m2/Kg2 

2. The Coulomb’s force may be 

attractive or repulsive in nature. 

The gravitational force is always attractive. 

3. 

 

The Coulomb’s force (electrical 

force) depends upon the medium 

between the charges. 

The gravitational force is independent of 

medium between the masses. 

4. The Coulomb’s force is much 

stronger. 

The gravitational force is much weaker than 

the Coulomb’s force. 

 

Example 3: Calculate the Coulombian force between two protons when the distance between 

them is 4 × 10-15 meter. Also give the nature of this force. 

Solution: Given r = 4 × 10-15 meter 

We know, the charge on proton = 1.6 × 10-19 C (positive), therefore, q1 = q2 = + 1.6 × 10-19 C 

Applying Coulomb’s law- 

                                                             F = 
1

4πε0

q1q2

r2
 

or  F = 9× 109 ×1.6 × 10-19×1.6 × 10-19 /(4×10-15)2 

        = 14.4 Newton (repulsive) 

Example 4: Show that the gravitational force is negligible in comparison to electric force in 

hydrogen atom in which the electron and proton are about 5.3 × 10-11 metre apart. 

Solution: The gravitational force between electron and proton is given by- 

1 2

2g

Gm m
F

r
 , Here m1= mass of electron= 9.1×10-31 Kg, m2 = mass of proton = 1.6 ×10-27 Kg, r 

= 5.3 × 10-11 m and G = 6.67 x 10-11 N-m2/Kg2 
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Therefore, Fg=
6.67×10−11×9.1×10−31×1.6×10−27

(5.3×10−11)2
 

                                                = 3.69×10-47 N 

Now electric force  Fe = 
1

4πε0

q1q2

r2
 

Here 
1

4πε0
 = 9 x 109 N-m2/C2 , q1 = q2 = 1.6 ×10-19 C 

Therefore, Fe = 9 x 109× 
1.6×10−19×1.6×10−19

(5.3×10−11)2
 = 8.2×10-8 N 

Obviously, gravitational force is negligible in comparison to electric force in hydrogen atom in 

which the electron and proton are about 5.3 × 10-11 metre apart. 

Example 5:A charge Q is divided into two parts such that they repel each other with a maximum 

force when placed at a certain distance apart. Find the distribution of charge. 

Solution: Let the two parts of charge Q be Q’ and Q-Q’. The force between two parts is given as- 

                                                        F = 
1

4πε0

𝑄′(𝑄−𝑄′)

𝑟2  

For maximum value of F, 
dF

dQ′
 =0     (r is constant) 

Therefore,                                              
1

4πε0

𝑄−2𝑄′

𝑟2  = 0 

or                                                                 Q-2Q’ =0 

 or  Q’ = Q/2 

Therefore, the charge Q should be divided into two equal parts. 

Self Assessment Question (SAQ) 3:Two identical metallic spheres, having unequal opposite 

charges are placed at a distance of 0.30 metre apart in air. After bringing them in contact with 

each other, they are again placed at the same distance apart. Now the force of repulsion between 

them is 0.183 N. Calculate the final charge on each of them. 

Self Assessment Question (SAQ) 4:Two point charges +4Q and +Q are fixed at a distance r 

apart. Where a third point charge q should be placed on the line joining the two charges so that it 

is in equilibrium? In which condition the equilibrium will be stable and in which unstable? 

Self Assessment Question (SAQ) 5:Calculate absolute permittivity of water if dielectric 

constant of water is 81. 
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Self Assessment Question (SAQ) 6:Two positively charged particles, each of mass 1.7×10-27 

Kg and carrying a charge of 1.6 × 10-19 coulomb, are placed at a distance l apart. If each one 

experiences a repulsive force equal to its weight, find l. 

1.6 SUMMARY 

In the present unit, you have studied about electric charge, how it was discovered and its 

properties. You have studied that there is no effect of motion on the charge of a body i.e. the 

charge on a body or particle remains the same whether it is at rest or moving with any velocity. 

Charge is conserved i.e. it can neither be created nor destroyed but it may simply be transferred 

from one body to another body. You have also studied about the quantization of charge i.e. 

electric charge cannot be divided indefinitely. Millikan’s oil drop experiment has been discussed 

which confirms the quantum nature of charge. You have also studied Coulomb’s law, its 

conditions of validity and importance. According to Coulomb’s law, “The force of attraction or 

repulsion between two point charges is directly proportional to the product of the charges and 

inversely proportional to the square of distance between them. The direction of this force is along 

the line joining the two charges”. This law is called Coulomb’s inverse square law. You have 

studied that Coulomb’s law holds only for point charges and spherical charges at sufficient 

separation, assuming the charge to be concentrated at their centres, however, it may be applied to 

extended objects provided the distance between them is much larger than their dimensions. This 

law is true for atomic and nuclear distances. You have studied the comparison between 

Coulomb’s law and Gravitational force. It is clear that Coulomb’s law between two charged 

bodies is much stronger than the Gravitational force acting between them. Many solved 

examples are given in the unit to make the concepts clear. To check your progress, self 

assessment questions (SAQs) are given place to place. 

1.7  GLOSSARY 

Transfer- shift, transmit 

Conserved- preserved 

Performed- carried out or completed an action or function 

Demonstrate- show, display 

Intense- concentrated, powerful 

Illuminate- light up 

Viscous- thick, sticky 

Vacuum- void, vacuity 
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Dielectric- that does not conduct electricity, insulating 

Validity- legality, legitimacy 

1.8 TERMINAL QUESTIONS 

1. Explain quantization of charge. Hence define elementary charge. 

2. How many electrons must be removed from a piece of metal to give it + 1 ×10-7 C of charge? 

3. State and explain the principle of conservation of charge. 

4. Discuss Millikan’s oil drop experiment to verify the quantum nature of electric charge. 

5. In Millikan’s experiment, an oil drop of radius 10-4 cm remains suspended between the plates 

which are 1 cm apart. If the drop has a charge of 5e over it, calculate the potential difference 

between the plates. The density of oil may be taken as 1.5 g/cc. 

6. State Coulomb’s law in electrostatics. Mention two similarities and two dissimilarities 

between electrostatic and gravitational interactions. 

7. Does Coulomb’s law of electric force obey Newton’s third law of motion? 

8. Give the importance of Coulomb’s law. 

9.  Give comparison of Coulomb’s force and Gravitational force. 

 

1.9 ANSWERS 

Self Assessment Questions (SAQs): 

1. When two neutral bodies are rubbed together, electrons of one body are transferred to the 

other. The body which gains electrons is negatively charged and the body which loses 

electrons is positively charged. When wool is rubbed with a piece of polythene, the wool 

becomes positively charged and polythene becomes negatively charged. It means that 

electrons are transferred from wool to polythene. 

As we know that electrons have finite mass, therefore mass is transferred from wool to 

polythene. 

The transferred mass = number of electrons transfer redx mass of one electron  

2. Given mass of drop m =  5 gm = 5x10-3 Kg, d= 10 cm= 0.10 m, V = 50 Volt 

and g = 9.8 m/sec2 
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                                                                qE 

 50 V          E 10 cm 

                                                                mg 

 

 

The electric field between the plates E = 
V

d
 = 

50

0.10
 = 500 volt/m (vertically upward from 

positive plate to negative plate) 

Weight of the drop W = mg = 5x10-3 x 9.8 = 49 x 10-3 Newton (vertically downward) 

Electric force acting on the drop F = qE = q x 500 Newton 

For the equilibrium, the two forces i.e. weight of drop and electric force acting on the drop 

should be equal and opposite in direction. The weight of the drop will act vertically 

downward, therefore the electric force on drop should act vertically upward. Therefore, F = W 

or q x 500 = 49 x 10-3 or q = 49 x 10-3/500 = 0.000098 coulomb (Positive charge) 

3. When identical metallic spheres are brought in contact, then after separation they carry equal 

charges. 

Let Q be the charge on each sphere, then force of repulsion between them will be- 

                                                            F = 
1

4πε0

𝑄 ×𝑄

𝑟2  

Here F = 0.183 N, r = 0.30 metre, 
1

4πε0
= 9 x 109 N-m2/C2 

Therefore, 0.183 = 9 x 109 ×
𝑄2

(0.30)2
 

 or      Q2 = 183 × 10-14 

or      Q = √183 × 10−14 = 13.527 ×10-7 = 1.35 × 10-6 Coulomb = 1.35 μC 

4. Let the third point charge q is placed between the charges + 4Q and + Q at a distance x from 

+4Q. 

The distance of third charge from + Q = r-x 

Let third point charge q be positive. 

 

                             +4Q                               F2     +q     F1 +Q 

r 

x                                   (r-x) 
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The electric force on the charge +q due to the charge +4Q is- 

                                F1 = 
1

4πε0

4𝑄 ×𝑞

𝑥2
     (repulsive) 

Similarly, the electric force on the charge +q due to the +Q is- 

 F2 = 
1

4πε0

𝑄 ×𝑞

(𝑟−𝑥)2
    (repulsive) 

For the equilibrium of charge +q, the above two forces should be equal and opposite. 

Therefore,                        F1 = F2 

 
1

4πε0

4𝑄 ×𝑞

𝑥2     = 
1

4πε0

𝑄 ×𝑞

(𝑟−𝑥)2
 

or                               4(r-x)2 = x2 

or                               2(r-x) = ±x 

or                                x = 2r/3 or  2r 

Only x= 2r/3 is possible because the charge + q is in between +4Q and +Q. Hence, for 

equilibrium, the charge +q will be placed at a distance 2r/3 from the charge + 4Q in between 

the two charges. If you displace the charge +q slightly from its equilibrium position (suppose 

towards right) then F1 will decrease and F2 will increase. Hence a net force (F2 – F1) will act 

on the charge +q towards left, due to which the charge will return to its equilibrium position. 

Thus the equilibrium of the charge +q is stable. 

Let third point charge q be negative. 

 

                             +4Q                               F1     -q     F2                   +Q 

                                                                             r 

x                                   (r-x) 

 

 

In this case, the force F1 and F2 will be of attraction and their directions will be according to 

the adjoining diagram. The charge –q will still be in equilibrium. If you displace this charge 

slightly towards right (say) then F1 will decrease and F2 will increase. Hence a net force (F2 – 

F1) will act on the charge –q but now its direction will be towards right. Hence the charge 

will go on moving towards right. Thus the equilibrium of the charge –q is unstable. 

5. Given K = 81, ε0 = 8.85x 10-12 C2/N-m2 

ε = Kε0 = 81 ×8.85x 10-12 = 7.16×10-10 C2/N-m2 

6. The repulsive force F = 
1

4πε0

𝑄 ×𝑄

𝑙2
 

Here, Q = 1.6 × 10-19 coulomb  
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Therefore, F = 9 x 109×
1.6 × 10−19 ×1.6×10−19

𝑙2
 

But F = mg= 1.7×10-27×9.8 = 1.66×10-26 N  

Therefore, 9 x 109×
1.6 × 10−19 ×1.6×10−19

𝑙2
 = 1.66×10-26 

 or  l = 0.117 metre 

Terminal Questions: 

2. Given, q = +1×10-7 C 

    Using q = ne or n = q/e = 1×10-7/1.6×10-19 = 6.25×1011 

5. Given r= 10-4 cm = 10-6 m, d= 1 cm= 0.01 m, q= 5e= 5×1.6×10-19 = 8×10-19 C,  

ρ = 1.5 g/cc = 1.5×10-3/10-6 = 1.5×103 Kg/m3 

Volume of drop V = 
4

3
 π r3 = 

4

3
×3.14× (10-6)3 = 4.18×10-18 m3 

    Mass of drop m = density× volume = ρ×V = 1.5×103×4.18×10-18 = 6.27×10-15 Kg 

    For equilibrium, qE = mg 

    or   q×V/d = mg  or   V = mgd/q = 6.27×10-15×9.8×0.01/(8×10-19)  

                     = 768.075 volt 

7. Yes 
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2.1 INTRODUCTION 
In the previous unit, you have learnt about charges, their properties, quantization and 

conservation of electric charge and Coulomb’s law. We know from our early studies that the 

mutual interaction between charged bodies can be interpreted as due to the force which each 

exert on the other, even though there is no material connection between them. This action at a 

distance view was considered to be inconvenient and troublesome. Faraday in 19th century 

introduced the so-called field concept to explain the mutual interactions between two charged 

bodies. This concept was subsequently developed by Maxwell. In this unit, you will study and 

learn about electric field, electric field intensity (strength) in different cases, electric potential 

and its calculation in different cases. In the unit, you will also study electric flux, Gauss’s law 

and the applications of Gauss’s law. The various concepts have been presented in a simple and 

clear manner. 

2.2 OBJECTIVES 

After studying this unit, you should be able to- 

 learn about electric field and electric potential 

 learn about electric lines of force 

 compute electric field intensity and electric potential in various cases 

 understand electric flux 

 understand Gauss’s law and its applications 

 solve problems based on electric field, electric potential and Gauss’s law 

2.3 CONCEPT OF ELECTRIC FIELD 

Let us consider an electric charge q located in space. If you bring another charge q0 near the 

charge q, then the charge q0 experiences a force of attraction or repulsion due to the charge q. 

The force experienced by q0 is said due to the electric field created by the charge q. Thus, “The 

space surrounding an electric charge in which another charge experiences a force 

(attractive or repulsive), is called the electric field of the electric charge”. We can say that “ 

The region in which a charge experiences a force is called the electric field”. 

If a charge q0 experiences a force in the space surrounding the charge q, then charge q is called 

the ‘source charge’ and the charge q0 is called the ‘test charge’. The source-charge may be a 

point-charge, a group of point-charges or a continuous distribution of charges. Further, the test 

charge must be vanishingly small so that it does not modify the electric field of the source 

charge. 
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2.4 INTENSITY OF ELECTRIC FIELD 

In order to determine the intensity (strength) of electric field at a point in the electric field, let us 

place an infinitesimal positive test charge q0 at that point. The force acting on this test charge is 

measured and this force divided by the test charge gives electric field strength. The test charge is 

assumed so small that it does not cause any change in initial electric field. Accordingly the 

electric field strength (or intensity) is defined as follows- 

“The intensity of electric field at a point in an electric field is the ratio of the force acting on 

the test charge placed at that point to the magnitude of the test charge”. It is a vector 

quantity and its direction is along the direction of force. 

Thus, if F⃗  be the force acting on a test charge q0 placed at a point in an electric field, then the 

intensity of electric field E⃗⃗  of the field at that point is given by- 

E⃗⃗ =
F⃗⃗ 

q0
…..(1) 

Here, we have assumed that test charge q0 is infinitesimal, therefore the definition of intensity of 

electric field may be expressed as- 

0 0
0

lim
q

F
E

q
 …..(2) 

Force F⃗  is a vector quantity and test charge q0 is a scalar quantity. Hence intensity of electric 

fieldE⃗⃗  will also be a vector quantity and its direction will be the same as the direction of the force 

F⃗  i.e. the direction in which the positive charge placed in the electric field tends to move. If test 

charge be negative, then the direction of electric field E⃗⃗  will be opposite to the direction of the 

force acting on the negative charge. 

Obviously, the unit of intensity (strength) of electric field is Newton/metre. 

If the intensity of electric field E⃗⃗  at a point in an electric field be known, then we can determine 

the force F⃗  acting on a charge q placed at that point by the following equation- 

F⃗  = qE⃗⃗                                                                    …..(3) 

2.5 ELECTRIC LINES OF FORCE 

In the previous sections, we have studied that a charge placed in an electric field experiences an 

electrostatic force. If the charge be free, then it will move in the direction of the force. If the 
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direction of the force continuously changes then the direction of motion of the charge also 

continuously changes i.e. it moves along a curved path. The path of a free positive charge in an 

electric field is called ‘electric line of force’. Hence, “an electric line of force is that imaginary 

smooth curve drawn in an electric field along which a free, isolated unit positive charge 

moves. The tangent drawn at any point on the electric line of force gives the direction of the 

force acting on a positive charge placed at that point”. We can represent an electric field by 

lines of force. 

 Now we can define the intensity (strength) of electric field in terms of electric lines of force as 

follows- 

“The intensity of electric field at any point is defined as a vector quantity whose magnitude is 

measured by the number of electric lines of force passing normally through per unit small area 

around that point and whose direction is along the tangent on line of force drawn at that point”.  

 

 

 B 

                                   A 

 

                                                                                Figure 1 

Accordingly, nearer are the electric lines of force, stronger is the electric field and if farther are 

the electric lines of force, weaker is the electric field. In the figure 1, the electric field strength at 

A is greater than that at B. 

2.5.1 Properties of Electric Lines of Force 

(i) The electric lines of force appear to start from positive charge and to end on a negative    

charge. If there is a single charge, they may start or end at infinity. 

 

 

 

 

 

(a)                                                     (b) 

 

+

  

-  
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                                                           (c) 

 

 

 Figure 2 

(ii) The tangent drawn at any point on the line of force gives the direction of the force acting on a 

positive charge at that point. 

(iii) No two electric lines of forces can intersect each other because if they do so, then two 

tangents can be drawn at the point of intersection which would mean two directions of 

electric field intensity at one point which is impossible. In figure 3, two directions of electric 

field at point of intersection P have been shown which is not possible. 

  E 

 

   

1P E 

  2  

                                                                               Figure 3 

(iv) The electric lines of force do not pass through a conductor because electric field inside a 

conductor is zero. 

(v) The equidistant electric lines of force represent uniform electric field while electric lines of 

forces at different separations represent non-uniform electric field. The relative closeness of 

lines of force in different regions of space expresses the relative strength of the electric field 
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in different regions. In regions, where lines of force are closer, the electric field is stronger 

whereas in regions where lines of force are farther apart, the field is weaker. 

 

                                                                        Figure 4 

 

 

(vi) The electric lines of force have a tendency to contract in length like a stretched elastic string 

and separate from each other laterally. The reason is that opposite charges attract and similar 

charges repel. 

(vii) The electric lines of force are always in the form of open curves, they do not form closed   

loops. 

(viii) The electric lines of force are imaginary but the electric field they represent is real. 

2.6 CALCULATION OF ELECTRIC FIELD INTENSITY  

In this section, we shall calculate electric field intensity in various cases viz. due to a point 

charge, due to a system of point charges and due to a continuous charge distribution. 
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2.6.1 Due to a Point-charge 

Let us consider an isolated point charge +q coulomb placed at a point M in air (or vacuum). In 

the electric field produced by the charge +q there is a point P, distant r meter from M, at which 

the intensity of electric field is to be calculated. 

 

 +q                                                             +q0 A 

 M                                                                   P F 

                                                                     r 

 

        Figure 5 

Let us assume that a test charge q0 is placed at the point P. According to Coulomb’s law, the 

electric force acting on q0,    F = 
1

4πε0

qq0

r2
 Newton 

The intensity of electric field at point P, E =
F

q0
 

                                                                    =   
1

4πε0

q

r2
 N/C   (along direction from P to A)     …..(4) 

If the system is placed in a medium of dielectric constant K, then 

                                     E = 
1

4πε0K

q

r2
 N/C   (along direction from P to A)                                …..(5) 

In vector form,  
2

0

1
ˆ

4

q
E r

r
     …..(6) 

Where  r^  is a unit vector pointing from the source charge towards the test charge. 

Equation (6) can be written as- 

E⃗⃗ =
1

4πε0

q

r3
r        (since r^ = 

r⃗ 

r
 )                                                                                          …..(7) 

If the source charge at M is –q, then the direction of the electric field E at point P would have 

been along PM (i.e. towards the charge –q). 

 

 



PHY (N)-102                                                                                                          ELECTRICITY AND MAGNETISM  
& PHY (N)-102L                                                                                                              & LABORATORY COURSE II   

25 
 

2.6.2 Due to a System of Point Charges 

If there are n point charges q1, q2, q3,………….qn then each of them will produce the same 

intensity at any point which it would have produced in the absence of other point charge. Hence 

the intensity of the field E⃗⃗  at a point P due to all the n charges will be equal to the vector sum of 

the intensities 1 2 3, , .....E E E …………produced by the separate charges as P- 

or
2

0

1
ˆ

4

n
i

i

i i

q
E r

r
                                                                                                              …..(8) 

Where ri is the distance of P from the charge qi. 

2.6.3 Due to a Continuous Charge Distribution 

If there is a continuous distribution of charge, then the summation in the above expression will 

be replaced by integration. 

If the charge is distributed on a line, then electric field intensity at a point P is- 

2

0

1
ˆ

4
l

dl
E r

r




  ….. (9) 

Where λ is the linear charge density ( or charge per unit length) and dl is the length of small 

element. 

If the charge is distributed on a surface, then the electric field intensity at a point P is – 

2

0

1
ˆ

4
S

dS
E r

r




  …..(10) 

Where r is the distance of the point P from a surface element dS and σ is the surface charge 

density (i.e. charge per unit surface area) 

Similarly, if the charge is distributed in a volume, then 

2

0

1
ˆ

4
V

dV
E r

r




  …..(11) 

Where ρ is the volume charge density i.e. charge per unit volume. 

2.6.4 Physical Significance of Electric Field 

The electric field is a vector quantity which may vary from point to point in magnitude and 

direction. The magnitude of electric field at any point is a measure of electric force on a unit 
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positive test charge, assuming that the test charge does not perturb the field of the system and its 

direction is that of electrostatic force on the test charge. This implies that the electric field is the 

characteristic of the charges of system and is independent of the test charge. The test charge is 

simply introduced for measurement of electric field in a suitable manner. 

The true physical significance of electric field appears only when we keep in view that 

electrostatic interaction is only a part of general fundamental force known as electromagnetic 

interaction. When two charges q1 and q2 are in accelerated motion, then either accelerated charge 

(say q1) produces electromagnetic wave which propagates with speed of light; reaches on another 

charge (say q2) and causes a force on it. 

Thus, the force between two distant charges is not instantaneous but appears with a time delay. 

Thus electric field (as well as magnetic field) is detected by their interaction forces; but they are 

not simply mathematical terms but are regarded as physical quantities which may be measured 

by the forces exerted by them on single charges or diploes. 

2.7 ELECTRIC POTENTIAL 

The electric field produced by a charge can be described in two ways- 

(i) by the intensity of electric field E⃗⃗  at a point in the field and 

(ii)  by the electric potential V 

The intensity of electric field E⃗⃗  is a vector quantity while electric potential V is scalar. Both these 

quantities are inter-related. In the study of electric field, the electric potential is an extremely 

important quantity. Both of them are the characteristic properties of a point in the field. 

We know that in an electric field, a free positive charge tends to move along the direction of the 

electric field. When a positive test charge is brought opposite to the direction of electric field, 

work is done against the Coulomb’s force of repulsion. To define absolute potential at any point, 

the potential at infinity is assumed to be zero. 

“The electric potential at any point in an electric field is defined as the work done by 

external force in carrying unit positive test charge from infinity to that point, without any 

acceleration”. 

Let W is the work done in bringing positive test charge q0 from infinity to any point in electric 

field, then electric potential at that point is- 

V = 
W

q0
                                                               …..(12) 

The electric potential is a scalar quantity. Its S.I. unit is Joule/Coulomb. It’s another unit is volt. 

If q0 =1 coulomb, W= 1 Joule, then 
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V = 
1 Joule

1 Coulomb
 = 1 volt 

i.e. 1 volt is the electric potential at a point in an electric field if the work done in bringing one 

coulomb of electric charge from infinity to that point is 1 joule, provided the charge of 1 

coulomb does not affect the original electric field. 

2.7.1 Potential Difference 

Let us define electric potential difference between two points in an electric field. “The ratio of 

work done by external force in carrying a positive test charge from one point to another in 

an electric field is called the potential difference between those points”.  

 

 

                                                                E 

 

                                                                    A                     B                                                                                                         

  

                                                                             Figure 6 

If WBA  is the amount of work done in moving the test charge q0 from B to A against the 

direction of electric field , then the potential difference between points A and B is given by- 

                                               VA – VB = 
WBA

q0
                                                                       …..(13) 

or simply ∆ V = 
W

q
                                                                                 …..(14) 

Both the work WBA and the charge q0 are scalars, therefore potential difference VA – VB will also 

be a scalar quantity. If in carrying a positive test charge from the point B to the point A, work is 

done by an external agent against the electric force, then the potential of point A is said to be 

higher than the potential of point B. In figure 6, the electric potential of point A is higher than the 

potential of point B. This also means that in an electric field a free positive charge moves from a 

region of higher potential to a region of lower potential. Conversely, a free negative charge 

moves from lower potential to higher potential. 

 If source charge (charge producing the electric field) is –q, then in taking the positive test charge 

q0 from point B to point A work would have been done by the electric force itself. In that case 

the electric potential of the point A would have been lower than the potential of the point B. 
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The unit of work done WBA is Joule and the unit of charge q0 is coulomb. Therefore, the unit of 

potential difference is Joule/Coulomb. 

Now we can define 1 volt potential difference. If WBA= 1 Joule, q0 = 1 Coulomb then 

VA – VB = 
1 Joule

1 Coulomb
  = 1 volt 

i.e. if 1 joule of work is done in carrying a test charge of 1 Coulomb from one point to the other 

in an electric field, then the potential difference between those points will be 1 volt. 

2.7.2 Physical Significance of Electric Potential 

Positive charge always flows from higher potential to lower potential just as a liquid always 

flows from higher pressure ( or higher level) to lower pressure ( or lower level) or heat always 

flows from higher temperature to lower temperature. There is no relation of direction of flow of 

charge with the quantity of charge as in the case of liquid flow or heat flow. Thus, the electric 

potential is that physical quantity which determines the direction of flow of positive charge. 

When we put two conducting bodies of unequal potentials in contact, the charge continues to 

flow from one body to another until their potentials become equal. The positive charge always 

flows from higher potential to lower potential, while negative charge always flows from lower to 

higher potential. When two conductors are kept in contact, the electrons flow from lower 

potential to higher potential until their potentials become equal. 

Example 1:  Compute the electric field intensity at a point 20 cm away in vacuum from an 

electric charge of 4×10-9 C. 

Solution: Given r = 20 cm= 0.20 m, q= 4×10-9 C 

The intensity of electric field E is given as- 

                             E =
1

4πε0

q

r2
 

=9×109×
4×10−9

(0.20)2
 = 900N/C 

Example 2:  An electron covers a distance of 60 mm when accelerated from rest by an electric 

field of intensity 2×104 N/C. Calculate the time of travel. (The mass of electron= 9×10-31 Kg, 

Charge on electron = 1.6×10-19 C respectively. 

Solution: Given s= 60 mm= 0.06 m, E = 2×104 N/C, m= 9×10-31 Kg, q= 1.6×10-19 C 

Electric force on electron F = qE = 1.6×10-19×2×104 = 3.2×10-15 N 

Acceleration experienced by electron a = 
F

m
 = 

3.2×10−15

9×10−31  = 3.5×1015 m/sec2 

Now, using second equation of motion s = ut +
1

2
at2 
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0.06 = 0×t + 
1

2
 ×3.5×1015 × t2 

or  0.06 = 
1

2
 ×3.5×1015 × t2 

or t2 = 0.03 ×10-15 = 0.3×10-16 

 or t = 0.54×10-8  sec 

Example 3:  Two point charges of 5×10-19 C and 20×10-19 C are separated by a distance 1 meter. 

At which point on the line joining them, the electric field is zero? If a charge 12×10-19 C is 

placed at this point then what will be the force acting on it? 

Solution: Let the two charges are placed at point P and point Q and the electric field at a point O 

between them is zero. Let the distance of point O from point P is x meter then the distance of O 

from point Q will be (1-x) meter. 

 

                                         P                          OQ 

5×10-19 CE2E120×10-19 

 x meter                       (1-x) meter 

The electric field at point O due to charge at P, E1= 
1

4πε0

q

r2
 

                                                                                = 9×109 ×
5×10−19

𝑥2    (along PO) 

Similarly, the electric field at point O due to charge at Q, E2 = 9×109 ×
20×10−19

(1−𝑥)2
   (along QO) 

Obviously, both electric fields are oppositely directed. If the resultant electric field at O is zero, 

then         E1 = E2 

              9×109 ×
5×10−19

𝑥2  = 9×109 ×
20×10−19

(1−𝑥)2
 

               4x2 = (1-x)2 

            or 2x = ±(1-x) 

            or  2x = (1-x)  or –(1-x) 

            or  x = 1/3 meter  or x = -1 meter 

x =-1 meter is not possible because the point O is between point P and point Q . Therefore x = 

1/3 meter is the distance of point O from point P where the resultant electric field will be zero. 
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Since at point O, resultant electric field E = 0, therefore force on charge 12×10-19 C at point O is- 

F = qE = 12×10-19 ×0 = 0 

i.e. the net force acting on the charge 12×10-19 C at point O is zero. 

Example 4:  If 40 Joule work is done in bringing a charge 4×10-19 C from infinity to a point in 

electric field, what is the potential at that point? 

Solution: Given W = 40 Joule, q = 4×10-19 C 

Using V = 
W

q
  = 

40

4×10−19 = 1020 volt 

Example 5: How much work is done in bringing a charge of 2.5×10-6 C from one point to 

another, if the potential difference between the two points is 4 volt? 

Solution: Given  q = 2.5×10-6 C, ∆ V = 4 volt 

Using,  ∆ V = 
W

q
 

or  W = ∆ V× q = 4×2.5×10-6 = 10-5 Joule 

Self Assessment Question (SAQ) 1: Calculate the electric field intensity at a point where a 

charge of 5× 10-4 C experiences a force of 2.25 N. 

Self Assessment Question (SAQ) 2:Anα-particle is kept in an electric field of 1.5×105N/C. 

Calculate the force on the particle. 

Self Assessment Question (SAQ) 3:What is the intensity of electric field due to a helium 

nucleus at a distance of 1 A0 from the nucleus? 

Self Assessment Question (SAQ) 4: A point charge of 6×10-8 C is situated at the coordinate 

origin.  How much work will be done in taking an electron from the point x1meter to x2 meter 

where potential difference is 50 volt? 

Self Assessment Question (SAQ) 5: The electric field intensity at a point on the line joining two 

point charges is zero. What conclusion can you draw about the charges? 

Self Assessment Question (SAQ) 6: Calculate the acceleration of an electron in an electric field 

of 9×105 N/C. The charge on an electron is 1.6×10-19 C and its mass is 9.1×10-31 Kg. 

Self Assessment Question (SAQ) 7: In the given diagram, calculate the resultant intensity of 

electric field at the point P due to all charges. The charges are in μC and the distances in cm. If a 

charge 1 μC is placed at point P, what will the force on this charge? Also give the direction of 

force acting on the charge.  
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                                       +5                             8                          -3.6 

                                                         θ 

 

                                                                 10                                     6  

  

                                                                                                    P 

  

2.8 ELECTRIC POTENTIAL AS LINE INTEGRAL OF 

ELECTRIC FIELD 

Let us consider a region in electric field. The intensity of electric field at any point is specified 

byE⃗⃗ . Let a positive test charge q0 be displaced from point P to point Q, opposite to the direction 

of electric field. Then the external force on test charge F⃗  = - q0E⃗⃗  

 P 

 

𝑑𝑟⃗⃗⃗⃗  E⃗⃗  

 

 

  Q 

                                                                                 Figure 7 

 

Therefore, the work done in displacing the test charge through a small displacement 𝑑𝑟⃗⃗⃗⃗  will be- 

                                                              dW = F⃗ .𝑑𝑟⃗⃗⃗⃗  = - q0E⃗⃗ .𝑑𝑟⃗⃗⃗⃗  

The total work done in displacing the charge from point P to point Q is 

                                                      WPQ = -q0∫ E⃗⃗ . 𝑑𝑟⃗⃗⃗⃗ 𝑄

𝑃  
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where the integral extends along the path from P to Q. 

Therefore, the potential difference between two points P to Q will be- 

VQ – VP = 
WPQ

q0
 = -∫ E⃗⃗ . 𝑑𝑟⃗⃗⃗⃗ 𝑄

𝑃
.....(15) 

If the point P is taken at infinity, the reference level for zero potential, i.e. VP = 0, then the 

potential at point Q,   VQ = −∫ E⃗⃗ . 𝑑𝑟⃗⃗⃗⃗ 𝑄

∞
                                                                              …..(16) 

Thus, the electric potential at any point in an electric field is defined as the negative of line 

integral of electric field from infinity to given point. 

2.9 ELECTRIC FIELD AS NEGATIVE GRADIENT OF 

POTENTIAL 

 P                      δr Q 

                          (x, y, z)                                        (x+δx, y+δy, z+δz) 

 

                                                          Figure 8 

Let us consider that V and V + δV are the electric potential at two neighbouring points P and Q 

having coordinates (x, y, z) and  (x+δx, y+δy, z+δz) respectively. 

Since electric potential V is a function of (x, y, z) i.e., V = V (x, y, z), then the potential 

difference between points P and Q may be written in the following general form- 

ΔV = 
𝜕𝑉

𝜕𝑥
𝛿𝑥 +

𝜕𝑉

𝜕𝑦
𝛿𝑦 +

𝜕𝑉

𝜕𝑧
𝛿𝑧  

Or, ˆ ˆˆ ˆ ˆ ˆ( ).( ) .
V V V

i j k i x j y k z V dr
x y z

  
  

    
  

…..(17) 

If E⃗⃗  is the electric field intensity in the region of points P and Q, then by definition, the potential 

difference between two points P and Q separated by distance ˆˆ ˆ( )r i x j y k z       is given 

by- 

ΔV = - E⃗⃗  . δr⃗⃗  ⃗                                                                      …..(18) 

Comparing equation (17) and equation (18), we get- 

                                                 - E⃗⃗  . δr⃗⃗  ⃗ = ∇V. δr⃗⃗  ⃗ 

or                                              (E⃗⃗  + ∇V ).δr⃗⃗  ⃗ = 0 

Since δr⃗⃗  ⃗ is arbitrary, we must have- 

0E V   

or E V  = - grad V                                   …..(19) 

Thus, the electric field intensity at any point is equal to the negative gradient of the potential at 

that point. 
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Equation (19) can be written in terms of components as- 

ˆ ˆˆ ˆ ˆ ˆ( )x y z

V V V
E iE jE kE i j k

x y z

  
      

  
    …..(20) 

Comparing coefficients, we get- 

Ex = - 
𝜕𝑉

𝜕𝑥
,  Ey = - 

𝜕𝑉

𝜕𝑦
 ,   Ez = - 

𝜕𝑉

𝜕𝑧
                                        …..(21) 

In general,                            E = - 
dV

dr
 

2.10 CALCULATION OF ELECTRIC POTENTIAL 

In this section, we shall calculate the electric potential in different cases. Let us discuss one by 

one. 

2.10.1 Due to a Point-charge 

Let us consider a charge of +q coulomb is placed at a point O (as shown in figure) in air (or 

vacuum). Let P is the point at which the electric potential is to be calculated. The distance of 

point P from O is r. 

                                        +q                                                                              +q0 

  F 

                                        O                                                       P                B    A 

            r                                                   dx  

x 

                                                                                         Figure 9 

Let a test charge +q0 is placed at point A, distant x from point O and away from point P.  

By Coulomb’s law, the electric force acting on q0 is given by- 

                                                           F = 
1

4πε0

qq0

x2     (along OA) 

Let us consider another point B at a distance dx from point A towards O (i.e. at a distance –dx 

from A ). Then the work done in bringing the test charge +q0 from point A to point B against the 

force F is- 

       dW = F⃗ . 𝑑𝑥⃗⃗⃗⃗   = F dx cos1800 

    = - 
1

4πε0

qq0

x2  (dx)  = - 
1

4πε0

qq0

x2  dx 

Therefore, the total work done in bringing the test charge +q0 from infinity to P is- 
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 W = ∫ (− 
1

4πε0

qq0

x2  dx)
𝑟

∞
 = − 

1

4πε0
q q0∫ (−

dx

x2)
𝑟

∞
 

                                              = − 
1

4πε0
q q0[

1

𝑥
]
∞

𝑟

 = − 
1

4πε0
q q0[

1

𝑟
−

1

∞
] 

                                              = 
1

4πε0

qq0

r
 

 By definition, the electric potential at point P, 

V = 
W

q0
  = 

1

4πε0

q

r
 

or                                            V = 
1

4πε0

q

r
                                                                          …..(22) 

If the system is in a medium of dielectric constant K, then 

                                             V = 
1

4πε0K

q

r
                                                                          …..(23) 

Similarly, the electric potential at point P due to a charge –q is given as- 

                                                     V = − 
1

4πε0K

q

r
                                                              …..(24) 

2.10.2 Due to a system of point charges 

Electric potential, being a scalar quantity, has no direction. Therefore, the electric potential at 

any point due to a group of point charges is found by calculating the potential due to each charge 

and then adding algebraically the quantities so obtained. 

                                                                              P 

 r1                                    r4 

 +q1 r2                  r3 

 -q4 

 -q3 

   +q2 

                                                                            Figure 10 

If a point P is at distances r1, r2, r3, r4 ……… from the point charges +q1, +q2, -q3, -

q4,………respectively, then the resultant electric potential at that point will be- 
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V = 
1

4πε0
[
𝑞1

𝑟1
 +

𝑞2

𝑟2
−

𝑞3

𝑟3
−

𝑞4

𝑟4
………… . . ]…..(25) 

If there are n point charges, then the electric potential due to them at a point P will be- 

0

1

4

n
i

i i

q
V

r
  …..(26) 

Where ri is the distance of the point from the charge qi. 

2.10.3 Due to a continuous charge Distribution 

If the charge distribution be continuous, then the summation in the above expressions will be 

replaced by integration i.e. 

                                                              V = 
1

4πε0
∫

dq

r
                                                      …..(27) 

Where dq is a differential element of the charge distribution and r is its distance from the point at 

which V is to be calculated. 

If the charge distribution is linear charge of charge per unit length (λ), then the charge on length 

element dl is dq = λ dl, then  

                                                               V = 
1

4πε0
∫

λdl

r
…..(28) 

If the charge is distributed continuously over an area S, then dq = σ dS, where σ is surface 

density of charge. Then, we have  V = 
1

4πε0
∫ ∫

σdS

r
                                                         …..(29) 

Where integral is surface integral. 

Similarly, if the charge is distributed continuously within a volume V, then 

                                                           V = 
1

4πε0
∫ ∫∫

ρdV

r
                                                 …..(30)    

Where ρ is the volume charge density and integral is volume integral.                 

Example 6: Calculate the electric potential due to pint charge +1.1×10-9 C at a distance of 100 

mm. 

Solution: Given, q = +1.1×10-9 C, r = 100 mm = 0.1 m 

Using  V = 
1

4πε0

q

r
, the electric potential V = 9×109 ×

1.1×10−9

0.1
 

                                                                  = +99 V 
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Example 7:Two point charges + 6 μC and -2 μC are 0.8 m apart. Locate the point at which the 

electric potential is zero. 

Solution:  Let us suppose that at point P, the electric potential is zero. Let the distance of point P 

from charge + 6 μC is x. Obviously, the distance of point P from charge will be (0.8-x) m. 

 

                                                                P 

                                         + 6 μC                                             -2 μC 

 x                       (0.8-x) 

The electric potential at point P due to charge + 6 μC is,  V1 = 
1

4πε0

q

r
 

                                 = 9×109 ×
6×10−6

X
  V 

Similarly, the electric potential at point P due to charge -2 μC,  V2 = 9×109 ×
(−2)×10−6

(0.8−X)
 V 

                                                                                                         = - 9×109 ×
2×10−6

(0.8−X)
 

Since the electric potential at P is zero, it means the algebraic sum of V1 and V2 should be zero 

i.e,  V1 + V2 =0 

or                                   9×109 ×
6×10−6

X
 - 9×109 ×

2×10−6

(0.8−X)
 = 0 

or                                                        
3

𝑥
 = 

1

(0.8−𝑥)
 

or                                                      x = 0.6 m. 

Example 8: Determine the value of VA- VB in the given arrangement. 

 x A   y       B    x 

                                     +q                                            -q 

Solution: x       A   y      B     x 

 +q                                           -q 

 The electric potential at point A due to charge +q, V1 = 
1

4πε0

q

r
 = 9×109 ×

q

X
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Similarly, the electric potential at A due to charge –q, V2 = 9×109 ×
(−q)

(x+y)
 = - 9×109 ×

q

(x+y)
 

Total electric potential at point A, VA = V1 + V2 = 9×109 ×
q

X
 - 9×109 ×

q

(x+y)
= 9×109 ×[

q

X
 - 

q

(x+y)
 ]  

Similarly, the electric potential at point B due to charges +q and –q are 9×109 ×
q

(x+y)
 and - 9×109 

×
q

X
 respectively. 

The total electric potential at point B, VB = 9×109 ×
q

(x+y)
- 9×109 ×

q

X
. = 9×109 ×[

q

(x+y)
−

q

X
] 

Therefore, VA – VB = 9×109 ×[
q

X
 - 

q

(x+y)
 ] - 9×109 ×[

q

(x+y)
−

q

X
] 

                                = 9×109 ×[
q

X
 - 

q

(x+y)
 - 

q

(x+y)
+

q

X
] = 9×109 ×

2𝑞𝑦

𝑥(𝑥+𝑦)
 

or                          VA – VB = 
1

4πε0

2𝑞𝑦

𝑥(𝑥+𝑦)
 

Self Assessment Question (SAQ) 8: The electric field intensity is zero at a point. Will the 

electric potential be necessarily zero at that point? 

Self Assessment Question (SAQ) 9: The electric potential is constant throughout a given region 

of space. What is the electric field intensity in that region? 

2.11 THE ELECTRIC FLUX 

The electric flux through a surface is defined as the total number of electric lines of force passing 

through that surface normally. 

 

   

E⃗⃗                                        θ              dS⃗⃗⃗⃗  

 

 

 

                                                                       Figure 11 

The electric flux through an elementary area dS is defined as the dot product (or scalar product) 

of electric field and the surface area i.e.   
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                                         Electric flux d∅ = E⃗⃗  . dS⃗⃗⃗⃗  …..(31) 

Let θ be the angle between the direction of electric field E⃗⃗   and the direction of surface area dS⃗⃗⃗⃗  

then,       d∅ = E dS Cosθ                                                                                       …..(32)   

The total electric flux through entire surface 𝑆 is obtained by adding up the scalar quantity E⃗⃗  . dS⃗⃗⃗⃗  

for all elements of area into which the surface has been divided. 

Thus the total electric flux ∅ = ∑E⃗⃗  . dS⃗⃗⃗⃗                                                                             …..(33) 

If the surface is continuous and electric field is different at different surface elements, then 

summation in equation (33) is replaced by integration, therefore the total electric flux through the 

entire surface, .
S

E dS      …..(34) 

Electric flux is a scalar quantity. Its unit is Newton-metre2Coulomb-1. 

2.12 THE GAUSS’S THEOREM 

Karl Friedrich Gauss gave a theorem that relates total outward electric flux through a 

hypothetical closed surface. This theorem is known after his name Gauss’s theorem. The 

hypothetical closed surface is called Gaussian surface. 

Gauss’s theorem states that the net outward normal electric flux through a closed surface of any 

shape is equal to 1/ε0 times the total charge contained within that surface, i.e. 

0

1
.

S

E dS q


           …..(35) 

Where
S

 indicates the surface integral over whole of the closed surface, ∑q is the algebraic sum 

of all the charges (i.e. net charge in coulombs) enclosed by the surface S. 

Proof:Let us first proof Gauss’s theorem for internal point. 

Direction of normal 

dωdS⃗⃗⃗⃗          θ 

  E⃗⃗  

 +q P 

 

 

 

     O                                                                                                   

                                                                                     Figure 12 
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Let a point charge +q coulomb be placed at point O within the closed surface. Let E⃗⃗  be the 

electric field intensity at point P. Let OP = r and the permittivity of the free space or vacuum be 

ε0. 

Let us consider a small area dS⃗⃗⃗⃗  of the surface surrounding the point P. The electric flux through 

dS⃗⃗⃗⃗  is- 

                                         d∅ = E⃗⃗  . dS⃗⃗⃗⃗                                                                        …..(i) 

Electric field intensity at point P, E⃗⃗  = 
1

4πε0

q

r2
 r^ = 

1

4πε0

qr⃗ 

r3
 

Therefore, from equation (i),    d∅ = 
1

4πε0
 q

𝑟 .𝑑𝑆⃗⃗⃗⃗  ⃗

𝑟3                                                        …..(ii) 

But 
𝑟 .𝑑𝑆⃗⃗⃗⃗  ⃗

𝑟3  = 
𝑑𝑆𝐶𝑜𝑠𝜃

𝑟2  = solid angle subtended by area dS at point O.  

      θ = angle between E⃗⃗  and dS⃗⃗⃗⃗  

From equation (ii), we get- 

                                    d∅ = 
1

4πε0
 q   dω = 

q

4πε0
  dω 

Hence electric flux through entire closed surface- 

∅  = ∫SE⃗⃗  . dS⃗⃗⃗⃗  = 
q

4πε0
∫dω                                                               …..(iii) 

But ∫dω is the solid angle due to the entire closed surface S at an internal point O = 4π 

Therefore, from equation (iv), ∅ = 
q

4πε0
 4π = 

1

𝜀0
𝑞 

If there are many charges +q1, +q2, +q3, ………-q1’, -q2’, -q3’,……….inside the closed surface, 

each charge will contribute to the electric flux. For positive charges, the flux will be outward and 

hence positive; for negative charges, the flux will be inward and negative. Therefore, the total 

electric flux in such a case is-  

∅ = 
1

𝜀0
 q1 + 

1

𝜀0
 q2 + 

1

𝜀0
 q3 +……….  -  

1

𝜀0
 q1’ - 

1

𝜀0
 q2’ - 

1

𝜀0
 q3’ -……….. 

                                           = 
1

𝜀0
 (q1 +  q2 + q3 +……….  -   q1’ -  q2’ -  q3’ -………..) 

                                            = 
1

𝜀0
∑q 
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Thus ∅ = 
1

𝜀0
∑q 

Where ∑q is the algebraic sum of the charges within the closed surface. 

Hence, net electric flux through a closed surface is equal to 
1

𝜀0
 times the total charge (in coulomb) 

enclosed within the surface which is Gauss’s theorem. 

Now let us proof Gauss’s theorem for external charge. 

Let us consider a closed surface S enclosing no charge, charge q is placed at the external point O.  

We construct a cone of lines of force from charge q to cut the surface. The surface of any shape 

is intersected in an even number of patches ( here 2); the contribution to electric flux due to these 

intersecting surfaces are - 
q

4πε0
  dω and + 

q

4πε0
  dω, therefore that flux through the surface is 

zero.Hence, charges external to Gaussian surface do not contribute to electric flux. Thus, Gauss’s 

theorem ∫SE⃗⃗  . dS⃗⃗⃗⃗  = 
1

𝜀0
 × charge enclosed by surface, is true whether external charges are present 

or not. 

 

 

 E2 

dω 

                          q 

                           O 

 E1 

S 

                                                                               Figure 13 

If the system is in a medium of dielectric constant K, then Gauss’s theorem can be written as- 

∫SE⃗⃗  . dS⃗⃗⃗⃗  = 
1

𝜀
∑q 

                                                    = 
1

ε0K
∑q                                                                   …..(36) 

It is to be noted that Gauss’s theorem remains valid as such even for charges in motion. 

Moreover it is applicable to any field obeying inverse square law. 
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2.13 APPLICATIONS OF GAUSS’S THEOREM 

It is very interesting that that Gauss’s theorem provides a convenient method for determination 

of electric field intensity in symmetrical cases. Here, we consider a imaginary Gaussian surface 

symmetrical to given charge, compute electric flux through this Gaussian surface and equate this 

flux to 
1

𝜀0
 × charge enclosed by the surface. Now let us discuss some important applications of 

Gauss’s theorem. 

2.13.1 Electric Field due to a Point-charge 

Let us consider a point charge q coulomb placed at point O. We have to find out the electric field 

intensity due to this charge at a point P distant r from it. Let us consider a closed spherical 

surface with centre at O and the point P lying on it. By symmetry the electric field E⃗⃗  has the 

same magnitude all over the surface and points everywhere normally outwards. 

 

 

 

 P 

  E⃗⃗  

 dS⃗⃗⃗⃗  

 

S 

 

                                                                               Figure 14 

 

Electric flux through the spherical surface, ∅ = ∫SE⃗⃗  . dS⃗⃗⃗⃗  = ∫S E dS Cosθ 

                                                                        = E ∫SdS = E (4π r2) 

(Since ∫SdS = 4π r2, total surface area of sphere) 

Charge enclosed by the surface = q 

 

                  +q 

                  O                  r 
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According to Gauss’s theorem,  

∫SE⃗⃗  . dS⃗⃗⃗⃗   = 1/ε0∑q       

E (4π r2) = 
1

𝜀0
 q 

or                                            E = 
1

4𝜋𝜀0

𝑞

𝑟2 

In vector form, we can write- 

E⃗⃗  = 
1

4𝜋𝜀0

𝑞

𝑟2 r^ = 
1

4𝜋𝜀0

𝑞

𝑟3 𝑟  

This is the expression for electric field intensity due to a point charge using Gauss’s theorem. 

2.13.2 Electric Field due to a charged spherical shell 

Let us consider a thin spherical shell of radius R and carrying charge Q with centre O. Let us first 

calculate the electric field outside the charged spherical shell. 

 

 �⃗� 0 

 P 

  

 R                    rr 

                                                                       O  +q 

 Gaussian surface 

 

         Figure 15 

Let us consider a point P at a distance r outside the shell. Let us draw an imaginary spherical  

surface of radius r = OP, concentric with the shell. By symmetry the electric field E0 at each 

point of surface is same and is directed radially outward. Let the value of electric field at the 

surface be E0. 

The net electric flux through the entire surface, ∅ = ∫S�⃗� 𝑂 . dS⃗⃗⃗⃗  = ∫S E0 dS Cos0 

                                          r 
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  =   ∫s E0 dS = E0 ∫S dS = E0 4π r2       (Since ∫SdS = 4π r2, total surface area of sphere) 

Total charge enclosed by the surface = + q 

Using Gauss’s theorem, ∅ =  ∫SE⃗⃗  . dS⃗⃗⃗⃗  = 1/ε0∑q       

                                            E0 4π r2  =  1/ε0∑q         

        or                                       E0 = 
1

4𝜋𝜀0

𝑄

𝑟2
 

Which is same if the charge Q was kept at the centre O. Hence the electric field intensity at a 

point outside a charged spherical shell is same as though the charge was kept at the centre O. 

Now, let us calculate the electric field inside the charged spherical shell. For this, let us consider 

a point P’ inside the shell at a distance of r i.e. r < R. Let us draw an imaginary Gaussian surface 

of radius r( r = OP’), concentric with the shell. If �⃗� 𝑖 is the electric field inside the shell, then by 

symmetry �⃗� 𝑖 is same at each point of spherical surface and is directed radially outward.  

 

 

 

 

 

 

 

                                                                               Figure 16 

 

Net electric flux through the surface, ∅ = ∫S�⃗� 𝑖 . dS⃗⃗⃗⃗  = ∫S Ei dS Cos0 

                  =   ∫s Ei dS = Ei ∫S dS = Ei 4π r2       (Since ∫SdS = 4π r2, total surface area of sphere) 

Total charge enclosed by the surface ∑q = 0 

 

                             r          P’ 

                   O                       R 
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Therefore, using Gauss’s theorem, we have- 

                                               ∅ =  ∫SE⃗⃗  . dS⃗⃗⃗⃗  = 1/ε0∑q       

                                          Ei 4π r2    = 0 

or                                       Ei = 0 

Thus electric field intensity at each point within the shell is zero. 

Example 9: How much electric flux will come out through surface 𝑑𝑆⃗⃗⃗⃗  = 5 k^ kept in an electric 

field �⃗�  = 3i^ + 7j^ + 4k^ ? 

Solution: Here 𝑑𝑆⃗⃗⃗⃗  = 5 k^, �⃗�  = 3i^ + 7j^ + 4k^ 

Electric flux, ∅ =   E⃗⃗  . dS⃗⃗⃗⃗  = (3i^ + 7j^ + 4k^). 5 k^ 

                          = 20 units 

Example 10:1 coulomb charge is kept at the centre of a cube of side 5 cm. Find out the electric 

flux coming out of any face of the cube. 

Solution:  Given q = 1 coulomb (the charge enclosed by the surface) 

Net flux through the cube, ∅ = 1/ε0 × total charge enclosed by the surface       

                                             = 1/ε0 × 1 = 1/ε0 

Cube has six faces. By symmetry the electric flux through each of cube face will be same. Hence 

the electric flux through a face of cube= 
1

6
×1/ε0 = 

1

6𝜀0
 = 1.884 × 1010 N-m2/C2 

Self Assessment Question (SAQ) 10: A charge q is kept at the centre of a cube of side ‘a’. What 

is the electric flux through any one face of cube? 

Self Assessment Question (SAQ) 11: Choose the correct option- 

The electric field intensity inside a spherical shell is- 

(a) Always zero           (b) sometimes zero         (c) infinite        (d) none of these  
Self Assessment Question (SAQ) 12: State True or False- 

Gauss’s law is basically equivalent to Coulomb’s law. 
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2.14 SUMMARY 

In the present unit, we have studied the concept of electric field, electric lines of force and their 

properties. We learnt that an electric line of force is that imaginary smooth curve drawn in an 

electric field along which a free, isolated unit positive charge moves. The tangent drawn at any 

point on the electric line of force gives the direction of the force acting on a positive charge 

placed at that point. We have also learnt that no two electric lines of forces can intersect each 

other.  We have established the expressions for electric field intensity and electric potential due 

to a point charge, a system of point charges and continuous charge distribution. We have studied 

and analysized the physical significance of electric field intensity. In the present unit, we have 

learnt about electric potential and electric potential difference. We have learnt that the electric 

field intensity at any point is equal to the negative gradient of the potential at that point. In the 

present unit we have learnt that the electric flux through a surface is defined as the total number 

of electric lines of force passing through that surface normally. We have studied and proved 

Gauss’s theorem in electrostatics. We have derived some expressions for electric field intensity 

using Gauss’s theorem. Several solved examples are given in the unit to make the concepts clear. 

To check your progress, self-assessment questions (SAQs) are given place to place. 

2.15 GLOSSARY  

Experience- occurrence 

Set-up- arrangement 

Perturb- disturb, agitate 

Characteristic- properties 

Independent- autonomous, free 

Significance- implication, importance 

Exert- apply, put forth, bring to bear 

2.16 TERMINAL QUESTIONS 

1. Give the concept of electric field. 

2. Draw electric lines of force due to an isolated negative charge. 

3. Define electric lines of force and discuss their important properties. 

4. Two electric lines of force never intersect each other. Why? 

5. Establish the expression for electric field intensity at a point due to a point charge. 
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6. Explain the physical significance of electric field intensity. 

7. Define potential difference between two points. Hence define electric potential at a point. 

8. A charge +7 × 10-19  C  is moved between two points. The potential difference between those   

points is zero. Estimate the work done in this process. 

9.  What is the physical significance of electric potential? 

10. Prove that the electric potential is the negative of line integral of electric field. 

11. Give the derivation of the electric field from electric potential. 

12. Prove, �⃗�  = - grad V 

13.  How does the electric potential due to a point charge vary with distance? 

14. Establish an expression for electric potential due to a point charge. 

15. Calculate the electric potential at the centre of a square of side ‘a’ which carries at its four    

corners charges q1, q2, q3 and q4.  

16. What is electric flux? What is its unit? Give its significance. 

17. State and proof Gauss’s theorem in electrostatics. 

18. Using Gauss’ theorem, prove that the electric field intensity due to a charged spherical shell 

at a point outside the shell is given by- 

     E0 = 
1

4𝜋𝜀0

𝑄

𝑟2 , where Q is the charge on shell and r is the distance of a point outside from the     

centre of shell. 

19.  Establish the expression for electric field intensity due to a point charge at a distance r as an 

application of Gauss’s theorem. 

2.17 ANSWERS 

Self Assessment Questions (SAQs): 

1. Given q = 5× 10-4 C, F = 2.25 N 

Using F = qE, the intensity of electric field E = F/q = 2.25/5× 10-4  = 4.5×103 N/C 

2. Given E = 1.5×105 N/C, we know that the charge on α-particle q = +3.2×10-19 C 

Using F = qE, the force on α-particle F = 3.2×10-19×1.5×105 = 4.8×10-14 N 

3. The helium nucleus has a positive charge equal to that on an α-particle i.e. the charge on 

helium nucleus q = + 3.2×10-19 C, here r = 1 A0 = 10-10 meter 
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We know that   E =
1

4πε0

q

r2 

                                  =9×109×
3.2×10−19

(10)−10
 = 2.88×1011 N/C 

4. Here,  q = 6×10-8 C, ∆V = 50 volt 

Using ∆ V = 
W

q
, the necessary work w = q ∆V = 6×10-8 ×50 = 3×10-6 Joule  

5. We can conclude that the charges are similar. 

6. Here q = 1.6×10-19 C, m= 9.1×10-31 Kg, E = 9×105 N/C 

Electric force on electron F = qE =1.6×10-19 × 9×105 = 1.44×10-13 N  

Now F = ma or a = F/m = 1.44×10-13/9.1×10-31 = 1.58×1017 m/sec2 

 

7. +5μC                             8 cm               -3.6μC 

A B 

 θ 

 

 Y 

                  10 cm 6 cm 

 

 E2 

X 

 P θ 

    E1 

 

  

The electric field intensity at point P due to charge +5μC, E1 = 
1

4πε0

q

r2
 

                                                                      = 9×109 ×
5×10−6

(10×10−2)2
 = 4.5×106 N/C  (along AP) 

Similarly, the electric field intensity at point P due charge -3.6μC, E2 = 9×109 ×
3.6×10−6

(6×10−2)2
 

                                                              = 9×106 N/C  (along PB) 

Let us resolve E1 and E2 into its components considering origin at P and X-axis and Y-axis as 

shown in figure. 

Resultant electric field intensity along X-axis, Ex = E1x+E2x 

                                                                              = (4.5×106 cos θ) + 0 

                                                                            = (4.5×106 ×
8

10
) = 3.6×106 N/C 

Similarly, total electric field intensity along Y-axis, Ey = E1y+ E2y 
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                                                                                        = ( - 4.5×106 sin θ) + (9×106) 

                                                                                      = ( - 4.5×106× 
6

10
) + (9×106) 

                                                                                     = 6.3×106 N/C 

Resultant electric field intensity at point P, E = √Ex
2 + Ey

2 

                                    = √(3.6 × 106)2 + (6.3 × 106)2 = 7.3×106 N/C 

If the resultant electric field intensity at P makes an angle θ with +X-axis, then θ = tan-1Ey

Ex

 

 = tan-1(
6.3×106

3.6×106) = tan-1( 1.75) 

The force on 1μC placed at point P, F = qE= 1×10-6×7.3×106 = 7.3N (in the direction of E) 

8. The electric field intensity is zero at a point exactly midway between two equal and similar 

charges, but the electric potential at that point is twice that due to a single charge. Therefore, 

the electric potential will not be necessarily zero at that point. 

9. We know that E = -
dV

dr
 

But V is constant throughout a given region space i.e. V is constant with r. Therefore,
dV

dr
 = 0 

and hence E is zero. 

10.  Total charge enclosed by the surface = q 

      Net flux through the cube, ∅ = 1/ε0 × total charge enclosed by the surface       

                                             = 1/ε0 × q = q/ε0 

Cube has six faces. By symmetry the electric flux through each of cube face will be same. 

Hence the electric flux through a face of cube= 
1

6
×q/ε0 = 

𝑞

6𝜀0
 

11.   (a)  

12.  True 

Terminal Questions: 

8.  The potential difference between two points is zero i.e. ∆V = 0 

     The work done in the process W = q ∆V = q × 0 = 0 

13. Since V = 
1

4πε0

q

r
  i.e. V α 

1

𝑟
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Obviously, the electric potential is inversely proportional to distance. The magnitude of   

electric potential increases with decrease in distance. 

15.                                                                            a 

                                                       q1 q2 

 

 a a 

  

  q4 q3 

 a 

    The length of diagonal of square = a√2 

    The half of the length of diagonal = a√2 /2 = a/√2 

    The electric potential at the centre C due to charge q1, V1 = 
1

4πε0

q1

(
a

√2
)
 

    The electric potential at the centre C due to charge q2, V2 = 
1

4πε0

q2

(
a

√2
)
 

   The electric potential at the centre C due to charge q3, V3 = 
1

4πε0

q3

(
a

√2
)
 

   The electric potential at the centre C due to charge q4, V4 = 
1

4πε0

q4

(
a

√2
)
 

   The total electric field at the centre of square V = V1 + V2 + V3 + V4 

  = 
1

4πε0

q1

(
a

√2
)
 + 

1

4πε0

q2

(
a

√2
)
 + 

1

4πε0

q3

(
a

√2
)
 + 

1

4πε0

q4

(
a

√2
)
 

                                               = 
1

4πε0

√2

a
 [q1+ q2+ q3 + q4] 
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UNIT 3     POTENTIAL AND FIELD DUE TO LONG   

CHARGED WIRE, SPHERE, DISC, ELECTRIC  

DIPOLE AND ENERGY STORED IN AN  

ELECTRICFIELD 
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3.2 Objectives 
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3.4Electric Field Intensity due to Charged Sphere 
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3.6Electric Potential due to a Charged Disc 

3.7 Electric Field Intensity due to a Charged Disc 

3.8 Electric Dipole 

        3.8.1 Couple on an Electric Dipole in a Uniform Electric Field 

        3.8.2 Work Done in Rotating an Electric Dipole in an Electric Field 

        3.8.3 Potential Energy of an Electric Dipole in an Electric Field 

        3.8.4 Electric Field due to an Electric Dipole 

        3.8.5 Electric Potential due to an Electric Dipole 
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3.1 INTRODUCTION 

In the previous unit, you have learnt about electric field, electric lines of force and their 

properties. You have calculated electric field intensity and potential due to a point charge, a 

system of point charges and a continuous charge distribution. You have also studied electric flux, 

Gauss’s theorem and applications. In the present unit, you will study, calculate, learn and analyze 

the electric potential and electric field due to an arbitrary charge, long charged wire, sphere and 

disc. You will also study about electric dipole and calculate the electric field intensity and 

potential in different cases of electric dipole. In this unit, you will learn also about energy stored 

in an electric field. 

3.2 OBJECTIVES 

After studying this unit, you should be able to- 

 learn about electric potential and electric field due to various bodies 

 learn about electric dipole 

 compute electric field intensity and electric potential in various cases 

 solve problems based on electric field, electric potential and electric dipole 

3.3 ELECTRIC FIELD INTENSITY AND POTENTIAL DUE TO 

AN INFINITELY LONG CHARGED WIRE 

Let us consider a section of an infinitely long straight wire charged uniformly. Let the linear 

charge density ( i.e. charge per unit length) of wire be λ C/m. 

E⃗⃗  

                                                                   P                   S3 

r  

 

                               S1                                                                                                                       S2 

 

l 

                                                                       Figure 1 

Let us consider an imaginary cylindrical surface (Gaussian surface) of radius r and length l co-

axial with the line charge and enclosed by two flat circular surfaces perpendicular to the line 

charge. By symmetry the electric field intensity E⃗⃗  is equal in magnitude and is directed normally 



PHY (N)-102                                                                                                          ELECTRICITY AND MAGNETISM  
& PHY (N)-102L                                                                                                              & LABORATORY COURSE II   

53 
 

at every point of the curved cylindrical surface. Obviously, there are three closed surfaces- two 

flat surfaces S1 and S2; one curved cylindrical surface S3. 

Applying Gauss’s theorem- 

∫SE⃗⃗  . dS⃗⃗⃗⃗   = 1/ε0∑q                    

or                            ∫S1E⃗⃗  . dS⃗⃗⃗⃗   + ∫S2E⃗⃗  . dS⃗⃗⃗⃗    + ∫S3E⃗⃗  . dS⃗⃗⃗⃗          = 1/ε0∑q             

or      ∫S1 (E dS Cos 900) + ∫S2 (E dS Cos 900) + ∫S3 (E dS Cos 00) = 1/ε0∑q             

or                  0 + 0 +  E ∫S3 dS = 1/ε0( λ×l)         [ since total charge ∑q = λ×l ] 

or                                 E ( 2π r l)  = 1/ε0 × λl      [ since ∫S3 dS = 2π r l= total curved surface area] 

or                    E =
1

4πε0

2λ

r
                                                                          …..(1) 

The equation (1) gives the electric field intensity due to an infinitely long charged wire at a 

distance r. 

Now let us calculate electric potential due to an infinitely long charged wire. In the previous unit, 

we have learnt that the electric potential at a distance r from the axis is given as- 

Vr = −∫ E⃗⃗ . 𝑑𝑟⃗⃗⃗⃗ 𝑟

∞
                                                   …..(2) 

Here at infinity (reference level), the potential is taken as zero. But in this case, reference 

distance cannot be taken as infinity since the wire itself extends to infinity. Hence in this case, 

we shall find the potential difference between two points distant r1 and r2 from the wire. We 

know that Potential difference   VB – VA = 
WPQ

q0
 = -∫ E⃗⃗ . 𝑑𝑟⃗⃗⃗⃗ 𝑄

𝑃
…..(3) 

Using above relation, we have the electric potential difference  ∆V = -∫ E⃗⃗ . 𝑑𝑟⃗⃗⃗⃗ 𝑟1

𝑟2
 

                                                              = -∫ E dr
𝑟1

𝑟2
 Cos 00 = -∫ E dr

𝑟1

𝑟2
 

                                                              = -∫
1

4πε0

2λ

r
dr

𝑟1

𝑟2
 = 

1

4𝜋𝜀0
2𝜆 𝑙𝑜𝑔𝑒

𝑟2

𝑟1
 

                                                                = 
𝜆

2𝜋𝜀0
𝑙𝑜𝑔𝑒

𝑟2

𝑟1
 

Or potential difference   ∆V = 
𝜆

2𝜋𝜀0
𝑙𝑜𝑔𝑒

𝑟2

𝑟1
                                                            …..(4) 
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The above expression gives the potential difference ∆V (or Vr1- Vr2) between two points distant 

r1 and r2. 

3.4 ELECTRIC FIELD INTENSITY DUE TO CHARGED 

SPHERE 

Let us consider a non-conducting sphere of radius R. The charge Q is uniformly distributed over 

it. The charge density of sphere ρ = 
Q

4

3
πR3

                                                                                …..(5) 

P is the point at a distance r from the centre of sphere at which electric field intensity is to be 

determined. Now let us discuss different cases as follows- 

Case (i) Point P lies outside the charge distribution, at external point ( r >R ) 

 

 Gaussian Surface 

 

 

                                                                           R dS⃗⃗⃗⃗  

       O         r                   P  Eo
⃗⃗⃗⃗  

 

 

 

Figure 2 

Obviously, OP = r. Let us draw a spherical surface (Gaussian surface) of radius OP = r 

concentric with the spherical surface. As the electric charge is uniformly distributed, by 

symmetry the electric field intensity EO at every point of this spherical surface has the same 

magnitude and is directed along the outward drawn normal to the entire surface. 

Total electric flux through the entire surface = ∫SEO
⃗⃗ ⃗⃗   .dS⃗⃗⃗⃗  = ∫S EO dS Cos 00 

                                             = ∫S EO dS = EO ∫SdS 

              = EO (4πr2)            [since ∫SdS = total surface area of spherical surface = 4πr2] 

Total charge enclosed by the Gaussian surface = Q  
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Using Gauss’s theorem- 

∫SE⃗⃗  . dS⃗⃗⃗⃗   = 1/ε0∑q                    

                                             EO (4πr2)  =1/ε0× Q 

                                             EO = 
1

4πε0

Q

r2
                                                                                …..(6) 

This is the same if the charge Q was placed at the centre of sphere O. Hence, the electric field 

intensity at any point outside a spherical charge distribution is the same as through the whole 

charge were concentrated at the centre. 

Case (ii) Point P lies on the surface of spherical charge distribution (r= R) 

If point P is on the surface of spherical charge distribution, then r = R i.e. the distance of point P 

from the centre of sphere is equal to the radius of sphere. In this case, the electric field intensity 

on the surface of the spherical charge distribution is given as- 

                                                          ES = 
1

4πε0

Q

R2                                                                  …..(7) 

Case (iii) Point P lies inside the charge distribution, at internal point(r<R) 

Let point P is inside the spherical charge distribution. The distance of point P from the centre of 

sphere is r. 

 

 

Ei
⃗⃗  ⃗ 

R  P     d             

                                                                          O     dS⃗⃗⃗⃗  

                                                                                               r 

 

                         Figure 3 

 

Let us consider a sphere of radius r concentric with spherical charge. Let the whole surface be 

divided into thin concentric shells. The electric field intensity at point P is the combined effect of 
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shells outside P as well as those inside P. But we know that the electric field intensity due to 

outer shells is zero. Thus, the electric field intensity at point P is due to inner shells only.  

By symmetry the electric field intensity Ei at every point of the spherical surface of radius r has 

the same magnitude and directed along the outward drawn normal to the surface. 

The total electric flux through the entire surface = ∫SEi
⃗⃗  ⃗ .dS⃗⃗⃗⃗  = ∫S Ei dS Cos 00 

                                             = ∫S Ei dS = Ei ∫SdS 

              = Ei (4πr2)            [since ∫SdS = total surface area of spherical surface = 4πr2 ] 

Total charge enclosed by Gaussian surface, Q’ = charge enclosed by a spherical core of radius r 

                                                                     =Volume of spherical core × volume charge density 

                                                                    = 
4

3
𝜋𝑟3ρ 

Using Gauss’s theorem- 

∫SEi
⃗⃗  ⃗ . dS⃗⃗⃗⃗   = 1/ε0×Q’ 

                                             Ei ( 4πr2)  =1/ε0× (
4

3
πr3ρ) 

                                             Ei = 
1

4πε0

4

3
πr3ρ

r2
 

                                                 =
1

4πε0

4

3
πr3

r2
×

Q
4

3
πR3

          [Since  ρ = 
Q

4

3
πR3

     equation (5) ] 

 or                                        Ei = 
1

4πε0

Qr

R3                                                                                  …..(8) 

Therefore, the electric field intensity at internal point of a spherically symmetric charge 

distribution is directly proportional to the distance of the point from the centre of spherical 

charge. 

 We have observed that the electric field intensity outside the charge distribution is inversely 

proportional to the square of the distance of the point from the centre of spherical charge. In this 

way, the electric field intensity is maximum at the surface of the spherical charge equal to 
1

4πε0

Q

R2. 

The variation of electric field intensity due to a uniformly charged non-conducting sphere is 

shown in the following figure 4 
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                                              E 

 

                                             ES ES = 
1

4πε0

Q

R2 

      EO α 
1

r2
 

                                                    Ei α r 

 O  r 

                                                                     R 

 

 

 

 

 

. 

                                                                     Figure 4 

3.5 ELECTRIC POTENTIAL DUE TO A CHARGED SPHERE 

Let us consider a uniformly charged spherical volume of radius R containing charge Q. The 

volume charge density, ρ = 
Q

4

3
πR3

. Let us learn and discuss the electric potential due to a charged 

sphere in various cases. 

Case (i) At external point of spherical volume (r >R) 

Let us consider a point P outside the spherical volume at a distance r > R.  

 

 

 

 

 

R    
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 P 

 

 R 

 

                                                                         Figure 5 

The electric field intensity at point P is given 

1 2

0

1
ˆ

4

Q
E r

r
  

The electric potential at point P, 

  V = -∫ Ei
⃗⃗  ⃗r

∞
.dr⃗⃗⃗⃗  = -∫

1

4πε0

r

∞

Q

r2
r̂.dr⃗⃗⃗⃗  

                                                      = - 
Q

4πε0
∫ r−2dr

r

∞
 = - 

Q

4πε0
[
𝑟−1

−1
]
∞

𝑟

 = 
1

4πε0

Q

r
                         …..(9) 

This expression is same as that of electric potential due to a charge placed at the centre O. In this 

way, for external points the spherical charge behaves as if the entire charge were concentrated at 

the centre of the spherical charge. 

Case (ii) Inside the spherical charge i.e. at internal point ( r < R ) 

Let us consider a point P’ inside the spherical charge at a distance r from the centre O at which 

electric potential is to be determined. 

 

 

 

 

 

 

                                                                               Figure  6 

R 

O 

R                

           r 

O         P’ 
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We have calculated the electric field intensity due to a uniformly charged non-conducting sphere 

at external and internal points as- 

𝐸𝑂
⃗⃗ ⃗⃗   = 

1

4πε0

Q

r2
r̂    and 𝐸𝑖

⃗⃗  ⃗ = 
1

4πε0

Qr

R3 r̂ 

The electric potential at point P’ at a distance r < R from the centre is given by- 

                                   V = -∫ E⃗⃗ 
r

∞
.dr⃗⃗⃗⃗  = - [∫ EO

⃗⃗ ⃗⃗  R

∞
.dr⃗⃗⃗⃗  + ∫ Ei

⃗⃗  ⃗r

R
.dr⃗⃗⃗⃗  ] 

Putting for EO
⃗⃗ ⃗⃗   and Ei

⃗⃗  ⃗ in the above expression, we get- 

                                  V = - [∫
1

4πε0

Q

r2
r̂

R

∞
.dr⃗⃗⃗⃗  + ∫

1

4πε0

Qr 

R3

r

R
r̂.dr⃗⃗⃗⃗  ] 

                                     = - 
1

4πε0
 [∫

Q

r2
r̂

R

∞
.dr⃗⃗⃗⃗  + ∫

Qr 

R3

r

R
r̂.dr⃗⃗⃗⃗  ] 

                                      = - 
1

4πε0
 [∫

Q

r2
dr

R

∞
 + ∫

Qr 

R3

r

R
dr ]       [Since r̂. dr⃗⃗⃗⃗  = 1× dr × Cos 00 = dr] 

                                      = - 
1

4πε0
Q [∫

1

r2
dr

R

∞
 + 

1

𝑅3 ∫ r
r

R
dr ]= - 

1

4πε0
Q [-(

1

r
)

∞

R

+ 
1

R3

1

2
(r2)R

r ] 

V = 
1

4πε0
Q [

3𝑅2− 𝑟2

2𝑅3 ]…..(10) 

This is the expression for electric potential at internal point. 

3.6 ELECTRIC POTENTIAL DUE TO A CHARGED DISC  

Let us consider a flat insulating disc of a radius ‘a’ carrying a positive charge Q spread uniformly 

over its surface. Let σ be the surface charge density of the disc. The disc considered here is non-

conducting because if it is conducting, it would become a surface of constant potential and not 

that of uniform charge as the charge on the conducting disc would redistribute itself, crowding 

more towards the rim of the disc. 

Let us calculate electric potential due to a charged disc. 

Case (i) At point on the axis of symmetry 

Let us consider a point P on the axis of symmetry at a distance x from the centre of the disc.  Let 

us suppose that the disc is formed of a large number of thin concentric ring shaped elements. Let 

us consider one such ring shaped element of radius y and thickness dy.  

The area of the ring element = circumference × thickness of the ring element = 2π y dy 

The charge on the ring element dq = surface charge density × area of the ring element 
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                                                        = σ (2π y dy) 

 

 

                        dy 

                      y√x2 + y2 

 

                                                                       x                    P 

 

 

 

 

             Figure 7 

 

Electric potential at point P due to this ring element- 

dV = 
1

4πε0

dq

√x2+y2
 

                                                                     = 
1

4πε0

σ (2π y dy)

√x2+y2
 

The electric potential at point P due to the entire disc, V = ∫
1

4πε0

σ (2π y dy)

√x2+y2

𝑎

0
 

                     = 
1

4πε0
σ 2π ∫

𝑦 𝑑𝑦

√x2+y2

𝑎

0
 = 

𝜎

2𝜀0
∫ 𝑦 (𝑥2 + 𝑦2)

−1

2
𝑎

0
 dy 

                    = 
𝜎

2𝜀0
[(𝑥2 + 𝑦2)

1

2]
0

𝑎

 = 
𝜎

2𝜀0
[√𝑥2 + 𝑎2 − 𝑥] 

or              V =  
𝜎

2𝜀0
[√𝑥2 + 𝑎2 − 𝑥],   for x > 0                                                                 …..(11) 

If x >> a, then   V = 
𝜎

2𝜀0
[𝑥 (1 +

𝑎2

𝑥2)

1

2
−  𝑥] = 

𝜎

2𝜀0
[𝑥 +

1

2

𝑎2

𝑥2 −  𝑥] 

 

 

 

 

  a 
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                        = 
1

4πε0

𝜎𝜋𝑎2

𝑥
 = 

1

4πε0

𝑄

𝑥
 

or  V = 
1

4πε0

𝑄

𝑥
 ,  for x >>a                                                                                     …..(12) 

Thus for axial points distant x >>a, the disc behaves like a point charge. 

Case (ii) At the centre of the disc 

At the centre, x = 0, therefore from equation (11), we get- 

VC = 
𝜎

2𝜀0
[√02 + 𝑎2 − 0]= 

𝜎𝑎

2𝜀0
 …..(13) 

 

 V 

 

 

 

 

 

 

 

 x                                                                          x 

                                                                              Figure 8 

The figure 8 shows the variation of electrical potential along the axis of a uniformly charged 

disc. 

Case (iii) At the rim or an edge of the disc 

Let A be the point on the edge of the disc. Let us consider a segment CD of a ring centred at A of 

radius r and thickness dr. 

Area of the segment = 2 r θ dr 

Electric charge on this segment dq = 2 r θ dr σ 
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The electric potential at point A due to this segment, dV = 
1

4πε0

𝑑𝑞

𝑟
 = 

1

4πε0

2 r θ dr σ

𝑟
 

 

                                                                                         = 
1

4πε0
 (2σθ) dr                          …..(14) 

The electric potential at point A due to entire charge on the disc is given as-  

                                                V = ∫
1

4πε0
 (2σθ) dr

𝜃=0

𝜃=𝜋/2
                                                  …..(15) 

 C 

 r 

  

 A                                                B 

 dr 

 D 

 

 

                                                                             Figure 9 

From figure 9,                                       r = 2a cos θ 

or                                                      dr = - 2a sinθ dθ 

From equation (15), we get- 

                                        V = 
2𝜎

4𝜋𝜀0
∫ θ( −2a sinθ dθ)

𝜃=0

𝜃=𝜋/2
 = 

𝜎𝑎

𝜋𝜀0
∫ θ sinθ dθ

𝜃=0

𝜃=𝜋/2
 

                                            = 
𝜎𝑎

𝜋𝜀0
[𝑠𝑖𝑛𝜃 −  𝜃 𝑐𝑜𝑠𝜃]0

𝜋/2
 = 

𝜎𝑎

𝜋𝜀0
                                             …..(16) 

Accordingly, the electric potential falls from the centre of the disc to the edge or rim. This 

indicates that a uniformly charged disc is not an equipotential surface. 

3.7 ELECTRIC FIELD DUE TO A CHARGED DISC  

You have learnt that electric potential due to a charged disc on axial point is given as- 

 

 

 

                    a 
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                                                 V =  
𝜎

2𝜀0
[√𝑥2 + 𝑎2 − 𝑥] 

Electric field intensity at axial point P at axial point P (Figure 7) at a distance x from the centre 

of the disc,                   E = - 
𝜕𝑉

𝜕𝑥
  = - 

𝜕

𝜕𝑥
[

𝜎

2𝜀0
{√𝑎2 + 𝑥2 −  𝑥}] 

or                                            E = 
𝜎

2𝜀0
[1 −

𝑥

√𝑎2+𝑥2
]                                                       …..(17) 

At the centre of the disc, x = 0, therefore electric field intensity E = 
𝜎

2𝜀0
                     …..(18) 

At axial points x >>a, the electric field intensity, E = 
𝜎

2𝜀0
[1 −

𝑥

√𝑎2+𝑥2
] 

                                                                           = 
𝜎

2𝜀0
[1 − 𝑥(𝑎2 + 𝑥2)−

1

2] 

                                            = 
𝜎

2𝜀0
[1 − (1 +

𝑎2

𝑥2)
−

1

2
] = 

𝜎

2𝜀0
[1 − (1 −

𝑎2

2𝑥2)],      for x >> a 

or                          E  = 
𝜎𝑎2

4𝜀0𝑥2 = 
1

4πε0

πσa2

4πε0
 = 

1

4πε0

𝑄

𝑥2,       for x >> a                        …..(19) 

 

E 

𝜎

2휀0
 

𝜎𝑎2

4휀0𝑥2
 

-2a         -a                       a                    -2a 

 Ox 

 

                                                              -  
𝜎𝑎2

4𝜀0𝑥2
 

−
𝜎

2휀0
 

 

                                                                                Figure 10 
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Figure 10 shows the variation of electric field intensity along the axis of a uniformly charged 

disc. 

Example 1:  The electric potential at the centre of an uniformly charged disc is 200 volt and the 

radius of the disc is 30 cm. Determine the charge on its surface? 

Solution: Given, VC = 200 volt, Radius of the disc, a = 30 cm = 0.30 m  

We know,                 VC  = 
𝜎𝑎

2𝜀0
 

or  σ = VC (2휀0)/a = 200(2×8.85×10-12)/ 0.30 = 1.18×10-8 C/m2 

Now σ = 
𝑞

𝜋𝑎2   or  q = σ π a2 = 1.18×10-8 ×3.14×(0.30)2 = 3.33×10-10 C 

Example 2: An infinite long conducting wire is stretched horizontally 3 metres above the surface 

of the earth. The wire has a charge of 1 C per m of its length. Determine the electric field 

intensity at a point on the earth vertically below the wire. 

Solution: We know that electric field intensity due to an infinitely long wire at any point distant r 

is given by- 

                                                        E =  
1

4πε0

2λ

r
 

Here, λ = 1 C per m, r = 3 m; therefore E = 9×109×
2×1

3
 = 6×109 N/C 

Self Assessment Question (SAQ) 1: Estimate the electric potential difference between the 

centre and the surface of a sphere of radius ‘R’ with uniform charge density ρ within it. 

Self Assessment Question (SAQ) 2: An infinite line charge generates an electric field intensity 

of 3× 105 N/C at a distance of 2 cm. Calculate the value of linear charge density. 

3.8 ELECTRIC DIPOLE 

“If two equal and opposite charges are placed at a short distance apart, then this system is known 

as an electric dipole.” The product of magnitude of one charge and the distance between the 

charges is called ‘electric dipole moment’ and it is denoted by ‘p’.                                                

p⃗   

                                       -q                                                             +q 

                                                                     2l 

                                                                       Figure 11 



PHY (N)-102                                                                                                          ELECTRICITY AND MAGNETISM  
& PHY (N)-102L                                                                                                              & LABORATORY COURSE II   

65 
 

Let two charges –q and + q coulomb are placed at a distance 2l metre, then the electric dipole 

moment is- 

                                                             p = q× 2l = 2ql                                                          …..(20) 

The electric dipole moment is a vector quantity whose direction is along the axis of the dipole 

pointing from the negative charge to the positive charge. The unit of electric dipole moment is 

coulomb-metre. Let us calculate the couple on an electric dipole in a uniform electric field. 

3.8.1 Couple on an Electric Dipole in a Uniform Electric Field 

Let us learn that what does happen with an electric dipole in an electric field. When an electric 

dipole is placed in a uniform electric field, a couple acts upon the dipole. This couple tends to 

align the electric dipole in the direction of the electric field. This is known as the ‘restoring 

couple’. 

 

 

 B 

                                    +q F’  

                                                                       2l 

 

F         -q           θ M E 

 A 

 

                                                                   Figure 12 

Let us consider an electric dipole AB placed in a uniform electric field E at an angle θ with the 

direction of electric field. –q and +q be the charges of electric dipole at a distance 2l from each 

other. 

Due to electric field E, the electric force on charge –q of dipole, F = qE (in the opposite direction 

of E ) 

Similarly, the electric force on charge +q due to E, F’ = qE (in the direction of electric field E) 

Obviously, the both forces are equal in magnitude but opposite in direction, due to this the net 

translator force on the electric dipole is zero, but these forces F and F (=F’) constitute a couple 
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which tends to align the dipole in the direction of the electric field E. This couple is restoring 

couple (τ). 

The moment of this restoring couple 

τ = magnitude of force × perpendicular distance between the lines of action of force 

                                = F × (BM) = qE ×2l sinθ 

                                = 2qlE sinθ = pE sinθ                      (since 2ql = p) 

Therefore,              τ = pE sinθ                                                                                           …..(21) 

The unit of couple τ is Newton-metre 

In vector form,      τ  = p⃗ × E⃗⃗                                                                                                …..(22)  

Where   p⃗  is a vector from the charge –q to +q. 

If θ = 900, i.e. electric dipole is placed perpendicular to electric field, then the couple acting on it 

is- 

                                     τ = pE sin900 = pE 

In this case, the couple acting on dipole will be maximum, therefore- 

                                         τmax = pE                                                                                  …..(23) 

or                                      p = 
τmax

E
 

If E = 1N/C, then p = τmax C-m, i.e., the moment of an electric dipole is equal to the couple 

acting on the dipole placed perpendicular to the direction of a uniform electric field intensity of 1 

N/C. 

If θ = 00, i.e. dipole is placed parallel to electric field, then the couple acting on dipole- 

                          τ = pE sin00 = 0 .....(24) 

i.e. if the dipole is placed parallel to the field, then no couple will act on dipole.              

3.8.2 Work Done in Rotating an Electric Dipole in an Electric Field 

Let us consider a dipole placed in a uniform electric field. If it is rotated from its equilibrium 

position, work has to be done. 
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Let us suppose that an electric dipole placed in electric field, is rotated through an angle θ from 

its equilibrium position. During rotation, the couple acting on the dipole changes. Let us suppose 

that at any instant, the dipole makes an angle α with the direction of electric field E.  

The instantaneous couple acting on the dipole is- 

                                                                 τ = pE sinα 

Amount of work done in rotating the dipole from this position through an infinitesimally small 

angle dα is- 

                                  dW = couple × angular displacement 

                                         = (pE sinα) dα 

Amount of work done in rotating the dipole through the angle θ from its equilibrium position is- 

                                   W = ∫ 𝑑𝑊
𝜃

0
 = ∫ (pE sinα) dα

𝜃

0
 

                                        = pE ∫  sinα dα
𝜃

0
  = pE [– cos 𝛼]

0

𝜃
 = - pE [cos 𝛼]0

𝜃 

                                        = -pE [cos θ – cos 0] = -pE [cosθ – 1] 

or                                W = pE (1- cos θ)                                                                              …..(25) 

The above expression represents the work done in rotating an electric dipole in a uniform electric 

field through an angle θ from the direction of the electric field (i.e. equilibrium position). 

If θ = 900, i.e. the dipole is rotated through an angle 900 from its equilibrium position, then work 

done- 

                                               W = pE (1- cos 900) 

                                                   = pE (1- 0) = pE                                                                 …..(26) 

If the dipole is rotated through 1800 from the direction of the electric field, then the work done- 

                                           W = pE (1 – cos 1800) 

                                               = pE (1+1) = 2pE                                                                   …..(27) 

This is the maximum work done for rotating a dipole. 

3.8.3 Potential Energy of an Electric Dipole in an Electric Field 

“The potential energy of an electric dipole in an electric field is defined as the work done in 

bringing the dipole from infinity to inside the electric field.” 
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 E⃗⃗  

 p⃗  

               F                                                              F 

                                        -q               2l                    +q                                                From infinity 

 

 

       Figure 13 

Let an electric dipole is brought from infinity to a uniform electric field E in such a way that the 

electric dipole moment p is always in the direction of electric field. Due to electric field E, a 

force F (= qE) acts on the charge +q in the direction of the electric field and an equal force F 

(=qE) on the charge –q in the opposite direction. Therefore, in bringing the electric dipole in the 

electric field from infinity, work will be done on the charge +q by an external agent, while work 

will be done by the electric field itself on the charge –q. 

Obviously, when the dipole is brought from infinity into the electric field, the charge –q covers 

2l distance more than the charge +q. Hence, the work done on –q charge will be greater. 

Therefore, the net work done in bringing the electric dipole from infinity into the electric field         

= force on charge (–q) × additional distance moved 

=  (-qE)×2l = - (2ql)E = -pE                                                [since 2ql = p] 

This work is the potential energy U0 of the electric dipole placed in the electric field parallel to it 

i.e.                                                             U0 = -pE                                                           …..(28) 

In this position, the electric dipole is in stable equilibrium inside the field. 

If we rotate the electric dipole in the electric field through an angle θ, then work will have to be 

done on electric dipole. This work is- 

                                                               W = pE (1-cosθ)                                                  …..(29) 

This will result in an increase in the potential energy of the electric dipole. Hence, the potential 

energy of the dipole in the position θ will be given by- 

                                                                  Uθ = U0 + W 

                                                                        = -pE + pE (1-cosθ) 



PHY (N)-102                                                                                                          ELECTRICITY AND MAGNETISM  
& PHY (N)-102L                                                                                                              & LABORATORY COURSE II   

69 
 

                                                                        = -pE + pE – pE cosθ = -pE cosθ 

or                                                                       Uθ = -pE cosθ                                             …..(30) 

The above equation (30) represents the potential energy of the electric dipole. 

In vector form, equation (30) can be written as- 

U⃗⃗  = -p⃗ . E⃗⃗                                                           …..(31) 

If θ = 900 i.e. the electric dipole is placed perpendicular to the electric field, then 

                                                       U90 = -pE cos900 = 0 

i.e. if we keep the electric dipole perpendicular to the electric field while bringing it from infinity 

into the electric field, then the work done on the charge +q by the external agent will be equal to 

the work on the charge –q by the electric field. In this way, the net work done on the dipole will 

be zero and hence the potential energy of the dipole will also be zero. 

If θ= 1800, i.e. if we rotate the electric dipole through 1800 from the position of stable 

equilibrium, then the potential energy, U180 = -pE cos1800 = + PE 

In this position, the electric dipole will be in unstable equilibrium. 

3.8.4 Electric Field due to an Electric Dipole 

In this subsection, you shall learn about electric field due to an electric dipole. You will calculate 

the electric field intensity on the axis of a dipole (i.e. end-on position) and equatorial line of a 

dipole (i.e. broad-side-on position). 

(i) Electric field intensity at a point on the axis of a dipole ( end-on position) 

Let us consider an electric dipole situated in a medium of dielectric constant K. Let P be a point 

on the axis at a distance ‘r’ metre from the midpoint ‘O’ of the dipole at which electric field 

intensity is to be determined. 

 

 2l 

                                      A                                                   BE2P        E1 

                                      -q                         O                        +q 

                                                                                                          r 

                                                                             Figure 14 
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The distance of point P from charge –q = (r+l) 

The distance of point P from charge +q = (r-l) 

Therefore, electric field intensity at point P due to charge +q, E1 = 
1

4𝜋𝜀0𝐾

𝑞

(𝑟−𝑙)2
,  ( along BP) 

Similarly, electric field intensity at point P due to charge -q, E2 = 
1

4𝜋𝜀0𝐾

𝑞

(𝑟+𝑙)2
,  ( along PA) 

Obviously, both intensities are in opposite directions, therefore net electric field intensity at point 

P,                                                     E = E1 – E2                              (since E1-E2) 

                                                           = 
1

4𝜋𝜀0𝐾

𝑞

(𝑟−𝑙)2
 - 

1

4𝜋𝜀0𝐾

𝑞

(𝑟+𝑙)2
 

                                                           = 
𝑞

4𝜋𝜀0𝐾
 [

1

(𝑟−𝑙)2
−

1

(𝑟+𝑙)2
] = 

𝑞

4𝜋𝜀0𝐾
 [

(𝑟+𝑙)2−(𝑟−𝑙)2

(𝑟2−𝑙2)2
] 

                                                           = 
𝑞

4𝜋𝜀0𝐾
[

4𝑙𝑟

(𝑟2−𝑙2)2
] = 

1

4𝜋𝜀0𝐾
[

2(2𝑞𝑙)𝑟

(𝑟2−𝑙2)2
] 

or                                                E = 
1

4𝜋𝜀0𝐾
[

2𝑝𝑟

(𝑟2−𝑙2)2
]                                         …..(32) 

 [since 2ql = p, electric dipole moment] 

The direction of E is along BP i.e. along the axis of the dipole from the negative charge towards 

the positive charge. 

If  l<< r, then l2 may be neglected in comparison to r2. Then electric field intensity at point P, 

                                               E =  
1

4𝜋𝜀0𝐾
[
2𝑝𝑟

𝑟4 ] = 
1

4𝜋𝜀0𝐾
[
2𝑝

𝑟3],  N/C          …..(33) 

For air or vacuum, K =1, then   E = 
1

4𝜋𝜀0
[
2𝑝

𝑟3]      N/C              …..(34) 

(ii) Electric field intensity at a point on the equatorial line of a dipole (broad-side-on 

position) 

Now let us calculate the electric field intensity at a point on the equatorial line. Let us suppose 

that the point P is situated on the right-bisector of the electric dipole AB at a distance ‘r’ metre 

from its mid-point ‘O’. 

Electric field intensity at point P due to charge +q, E1 = 
1

4𝜋𝜀0𝐾

𝑞

(𝑃𝐵)2
 

                                                                                      = 
1

4𝜋𝜀0𝐾

𝑞

(𝑟2+𝑙2)
,         ( along BP) 
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Similarly, electric field intensity at point P due to charge –q, E2 = 
1

4𝜋𝜀0𝐾

𝑞

(𝑃𝐴)2
 

                                                                                                 =
1

4𝜋𝜀0𝐾

𝑞

(𝑟2+𝑙2)
,       (along PA) 

Obviously, the magnitudes of E1 and E2 are equal but directions are different. 

Resolving E1 and E2 into their components- 

Horizontal component of E1 = E1 cosθ                                           (parallel to BA) 

Vertical component of E1 = E1 sinθ                                                (perpendicular to BA) 

Similarly, horizontal component of E2 = E2 cosθ     (parallel to BA) 

Vertical component of E2 = E2 sinθ                                               (perpendicular to BA) 

 

 

                                                       E1 

                θ 

                                                 E                  P 

 

                                                  E2 

 √𝑟2 + 𝑙2 

√𝑟2 + 𝑙2 r 

 θ 

 A                                                  B                                          

                                      -q                         O                        +q 

 

2l 

 Figure 15 
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Vertical components of E1 and E2 (E1 sinθ and E2 sinθ) are equal in magnitudes but opposite in 

direction, hence they cancel to each other. But horizontal components (E1 cosθ and E2 cosθ) are 

in same direction. Hence the resultant electric field intensity at point P is- 

                                                      E = E1 cosθ + E2 cosθ 

                                                         = 2E1 cosθ                                           (since E1 = E2) 

                                                        = 2
1

4𝜋𝜀0𝐾

𝑞

(𝑟2+𝑙2)
  cosθ 

But in right angled triangle POB,  cosθ = 
OB

PB
 = 

𝑙

√𝑟2+𝑙2
 

Therefore,          E = 2
1

4𝜋𝜀0𝐾

𝑞

(𝑟2+𝑙2)

𝑙

√𝑟2+𝑙2
 

 = 
1

4𝜋𝜀0𝐾

2𝑞𝑙

(𝑟2+𝑙2)
3

2⁄
  = 

1

4𝜋𝜀0𝐾

𝑝

(𝑟2+𝑙2)
3

2⁄
                   [since 2ql = p] 

Thus,                                                        E = 
1

4𝜋𝜀0𝐾

𝑝

(𝑟2+𝑙2)
3

2⁄
                                …..(35) 

The direction of E is horizontal along BA i.e. parallel to the axis of dipole from positive charge 

to negative charge. 

If l<< r, i.e. l is very small in comparison of r, then l2 can be neglected in comparison to r2; then  

E = 
1

4𝜋𝜀0𝐾

𝑝

(𝑟2)
3

2⁄
 = 

1

4𝜋𝜀0𝐾

𝑝

𝑟3  N/C                         …..(36) 

For air or vacuum, K =1 then E = 
1

4𝜋𝜀0

𝑝

𝑟3  N/C                                       …..(37) 

From equations (33) and (36), it is clear that for a short dipole the electric field intensity on an 

axial point is twice the intensity at the same distance on the equatorial line. 

3.8.5 Electric Potential due to an Electric Dipole 

In this subsection, you will calculate electric potential at a point on the axis and equatorial line of 

a dipole. 

(i) Electric potential at a point on the axis of the dipole (end-on position) 

Let us consider an electric dipole AB placed in a medium of dielectric constant K. P is the point 

on the axis ( end-on position) at a distance ‘r’ from the midpoint ‘O’ of the dipole at which 

electric potential is to be calculated. 
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                              2l 

                                      A                                                   B                                        P 

                                      -q                         O                        +q 

                                                                                                          r 

                                                                           Figure 16 

Electric potential at point P due to charge –q, V1 = 
1

4𝜋𝜀0𝐾

(−𝑞)

𝐴𝑃
 = −

1

4𝜋𝜀0𝐾

𝑞

(𝑟+𝑙)
 

Similarly, electric potential at point P due to charge +q, V2 = 
1

4𝜋𝜀0𝐾

𝑞

𝐵𝑃
 = 

1

4𝜋𝜀0𝐾

𝑞

(𝑟−𝑙)
 

Resultant electric potential at point P, V = V1 + V2 = −
1

4𝜋𝜀0𝐾

𝑞

(𝑟+𝑙)
 + 

1

4𝜋𝜀0𝐾

𝑞

(𝑟−𝑙)
 

= - 
𝑞

4𝜋𝜀0𝐾
[

1

(𝑟+𝑙)
−

1

(𝑟−𝑙)
] = 

𝑞

4𝜋𝜀0𝐾

2𝑙

(𝑟2−𝑙2)
  = 

1

4𝜋𝜀0𝐾

2𝑞𝑙

(𝑟2−𝑙2)
 = 

1

4𝜋𝜀0𝐾

𝑝

(𝑟2−𝑙2)
,             [since 2ql = p] 

Thus,                                                  V = 
1

4𝜋𝜀0𝐾

𝑝

(𝑟2−𝑙2)
                                    …..(38) 

If dipole is short i.e. l<< r, then l2 may be neglected in comparison to r2, then- 

                                                              V = 
1

4𝜋𝜀0𝐾

𝑝

𝑟2   volt                                             …..(39) 

For air or vacuum, K =1 then                    V = 
1

4𝜋𝜀0

𝑝

𝑟2 volt                                            …..(40) 

(ii) Electric potential at a point on the equatorial line of the dipole (broad-side-on position) 

P 

 

 

 √𝑟2 + 𝑙2 

√𝑟2 + 𝑙2  r 

                                        -q                                                    +q                                                   

                                   A                             O                               B                                          

                                  2l 

                                                                       Figure 17 
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Now let us consider a point P on the equatorial line of a dipole at a distance ‘r’ from the midpoint 

‘O’ of the dipole at which electric potential is to be calculated. 

The electric potential at point P due to charge -q, V1 = 
1

4𝜋𝜀0𝐾

(−𝑞)

𝐴𝑃
 = -  

1

4𝜋𝜀0𝐾

𝑞

√𝑟2+𝑙2
 

Similarly, the electric potential at point P due to charge +q, V2 = 
1

4𝜋𝜀0𝐾

𝑞

𝐵𝑃
 = 

1

4𝜋𝜀0𝐾

𝑞

√𝑟2+𝑙2
 

Resultant electric potential at point P, V = V1 + V2 

                                                                = -  
1

4𝜋𝜀0𝐾

𝑞

√𝑟2+𝑙2
 + 

1

4𝜋𝜀0𝐾

𝑞

√𝑟2+𝑙2
 

                                                               = 0 

Thus, the electric potential at an equatorial point of an electric dipole is zero. 

Example 3: Calculate electric dipole moment of the following dipole- 

 

-1μC                                          +1 μC 

 10 cm 

Solution: Here, q = 1 μC = 1 × 10-6 C, 2l = 10 cm = 0.1 m 

               Electric dipole moment p = q× 2l = 1 × 10-6 × 0.1 = 1×10-7 C-m 

Self Assessment Question (SAQ) 3: Two short electric dipoles of electric dipole moments p1 

and p2 are in a straight line. Prove that the potential energy of each in the presence of the other is 

-
1

2𝜋𝜀0

𝑝1𝑝2

𝑟3 , where r is the distance between the dipoles.  

3.9 SUMMARY 

In the present unit, you have calculated electric potential and electric field intensity due to long 

charged wire, charged sphere and charged disc. You have studied that the electric potential falls 

from the centre of the disc to the edge or rim which indicates that a uniformly charged disc is not 

an equipotential surface. In this unit, you have learnt about electric dipole and electric dipole 

moment. If two equal and opposite charges are placed at a short distance apart, then this system 

is known as an electric dipole. The product of magnitude of one charge and the distance between 

the charges is called ‘electric dipole moment’. You have also study about the torque acting on an 

electric dipole in a uniform electric field which is given as τ = pE sinθ, where p is the dipole 

moment, E, the intensity of electric field and θ is the angle that dipole makes with the direction 

of electric field. You have calculated the electric field intensity and potential due to dipole in 

end-on position and broad-side-on position. You have learnt that for a short dipole the electric 
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field intensity on an axial point is twice the intensity at the same distance on the equatorial line. 

You have also studied that the electric potential at an equatorial point of an electric dipole is 

zero. 

3.10 GLOSSARY  

Uniformly- homogeneously 

Non-conducting- in which there is no flow of current 

Align- line up, ally 

Constitute- make up, compose, comprise 

Rotation- turning round, revolution 

3.11 TERMINAL QUESTIONS 

1. Establish an expression for electric field intensity due to a long charged wire. 

2. Prove that the electric potential difference  due to a long charged wire  between two points 

distant r1 and r2  is                    ∆V = 
𝜆

2𝜋𝜀0
𝑙𝑜𝑔𝑒

𝑟2

𝑟1
 

3. A conducting sphere of radius 1 cm has an unknown charge. The electric field intensity at a 

point distant 2 cm from the centre of sphere is 2.7×104 N/C and points radially inward. 

Calculate the net charge on sphere. 

4. Show that electric field intensity due to a charged sphere at an external point is given as- 

    EO = 
1

4πε0

Q

r2
, where symbols have their usual meanings. Show the variation of electric field due 

to a uniformly charged non-conducting sphere. 

5.  Establish the formula for electric potential due to a charged sphere. 

6. Derive the formula for electric field due to a charged disc at a distance x from its centre. Also 

show that at the centre of disc, the electric potential is 
𝜎𝑎

2𝜀0
, where ‘σ’ and ‘a’ are surface 

charge density and radius of disc. 

7. Establish an expression for electric field due to a charged disc at an external point and hence 

show that the electric field at the centre of the disc is given as E = 
𝜎

2𝜀0
, where symbols have 

their usual meaning. 

8. What do you mean by an electric dipole? Show that an electric dipole, in a uniform electric 

field, experiences only a torque and no net force. 
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9. Establish an expression for the torque acting on dipole in a uniform electric field. 

10. Derive an expression for work done in rotating an electric dipole through an angle θ in an 

electric field. 

11. Obtain the expression for potential energy of an electric dipole in an electric field. 

12. Show that the electric field intensity due to an electric dipole at a point on end-on position is 

given by  E = 
1

4𝜋𝜀0𝐾
[

2𝑝𝑟

(𝑟2−𝑙2)2
], where symbols have their usual meaning. 

13. Prove that in air, the electric field intensity due to an electric dipole at a point on the 

equatorial line of a dipole is E = 
1

4𝜋𝜀0

𝑝

(𝑟2+𝑙2)
3

2⁄
, where symbols have their usual meaning. 

14. Prove that at a point in the broad-side-on position of an electric dipole the electric potential is 

zero. 

15. Explain, how is the electric potential due to a short electric dipole at a point r distant on the 

axis of the dipole is 
1

4𝜋𝜀0𝐾

𝑝

𝑟2 ? Here p and K are the electric dipole moment of dipole and 

dielectric constant of medium. 

16. Two point charges of -3 μC and +3 μC are at a distance 0.2 cm apart from each other. 

Calculate- 

    (i) electric dipole moment of the dipole 

   (ii) electric field intensity at a distance of 60 cm from the dipole in broad-side-on position 

   (iii) electric potential at a distance of 60 cm from the dipole in broad-side-on position 

   (iv) electric field intensity at a distance of 60 cm from the dipole in end-side-on position 

   (v) electric potential at a distance of 60 cm from the dipole in end-side-on position 

3.12 ANSWERS 

Self-Assessment Questions (SAQs): 

1. We know that electric field intensity at a point distant r from the centre is given by- 

�⃗� =  
1

4πε0

Qr

R3 �̂�, Q = Total charge on the sphere 

The potential difference between the centre ( r= 0) and the surface ( r = R) is given by- 

V0 – VR = - ∫ �⃗� 
0

𝑅
.𝑑𝑟⃗⃗⃗⃗  
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                                                   = - ∫
1

4πε0

Qr

R3
�̂�

0

𝑅
.𝑑𝑟⃗⃗⃗⃗  = - ∫

1

4πε0

Qr

R3
(1 ×  𝑑𝑟 × cos 000

𝑅
) 

                                                   = - ∫
1

4πε0

Qr

R3
 𝑑𝑟

0

𝑅
 = -

1

4πε0

Q

R3 ∫ 𝑟𝑑𝑟
0

𝑅
 

                                                  = 
1

4πε0

Q

2R
 

 But ρ = 
𝑄

4

3
𝜋𝑅3

  or Q =  
4

3
𝜋𝑅3ρ 

Therefore, V0 – VR = 
1

4πε0

4

3
𝜋𝑅3ρ

2R
 = 

𝜌𝑅2

6𝜀0
 

2. Given, E = 3× 105 N/C, r = 2 cm = 0.02 m 

    We know that  E = 
1

4πε0

2λ

r
 

3× 105 = 9×109×
2𝜆

0.02
    or  λ = 3.3×10-7 C/m 

3.  

                        -q             +q                                   -q             +q   

 

 r 

The electric field due to short dipole of electric dipole moment p1 at the other dipole is- 

                                                                 E = 
1

4𝜋𝜀0

2𝑝

𝑟3 

The potential energy of dipole with dipole moments p2 in the electric field is- 

                                                        U = -p2E cosθ = -p2×
1

4𝜋𝜀0

2𝑝

𝑟3 

                                                            = -
1

2𝜋𝜀0

𝑝1𝑝2

𝑟3  

Terminal Questions: 

3. Given, R= 1 cm = 0.01 m, E = 2.7×104 N/C, r = 2 cm = 0.02 m 

    Using  E = 
1

4πε0

Q

r2
, we get- 

    2.7×104 = 9×109×
Q

(0.02)2
    or  Q = 12 C 
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16. The two charges form a dipole. Here q = 3 μC = 3×10-6 C, 2l = 0.2 cm = 0.002 m 

     (i) Electric dipole moment, p = q × 2l = 3×10-6 ×0.002 = 6 × 10-9 C-m 

     (ii) r = 60 cm =0.60 m 

          E = 
1

4𝜋𝜀0

𝑝

𝑟3 = 9 × 109×
6 × 10−9

(0.60)3
 = 250 N/C 

     (iii) Electric potential in broad-side-on position, V = 0 

    (iv) Electric field intensity at a distance of 60 cm from the dipole in end-side-on position is- 

           E = 
1

4𝜋𝜀0
[
2𝑝

𝑟3] = 9 × 109×
2×6 × 10−9

(0.60)3
 = 500 N/C 

    (v) Electric potential at a distance of 60 cm from the dipole in end-side-on position is- 

           V = 
1

4𝜋𝜀0

𝑝

𝑟2 = 9 × 109×
6 × 10−9

(0.60)2
 = 150 volt 
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UNIT 4 DIELECTRIC POLARIZATION AND 

POLARIZATION CHARGES 

Structure 

4.1 Introduction 

4.2 Objectives 

4.3 Dielectric  

4.3.1 Dielectric Constant 

4.3.2 Classification of Dielectric 

4.3.3 Polarization of Dielectric 

4.3.4 Effect of Polarization on electric field within the Dielectric 

4.4 Electric Polarization vector P 

4.5 Field of a Polarized piece of a Dielectric 

4.6 Potential of a Polarized piece of a Dielectric 

4.7 Gauss’s law in Dielectric 

4.8Terminal Questions 

4.8.1 Long type questions 

4.8.2 Short type questions 

4.8.3 Objective type questions 

4.9Answers  

4.10 References 

4.11 Suggested books 
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4.1INTRODUCTION 
Electrical insulator materials which will prevent the flow of current in an electrical circuit are 

being used since from the beginning of the science and technology of electrical phenomena. 

Dielectrics are insulating materials that exhibit the property of electrical polarization, thereby 

they modify the dielectric function of the vacuum. The first capacitor was constructed by 

Cunaeus and Mussachenbroek in 1745 which was known as Leyden jar. But there were no 

studies about the properties of insulating materials until 1837. Faraday published the first 

numerical measurements on these materials, which he called dielectrics. He has found that the 

capacity of a condenser was dependent on the nature of the material separating the conducting 

surface. This discovery encouraged further empirical studies of insulating materials aiming at 

maximizing the amount of charge that can be stored by a capacitor. Throughout most of the 19th 

century, scientists searching for insulating materials for specific applications have become 

increasingly concerned with the detailed physical mechanism governing the behavior of these 

materials. In contrast to the insulation aspect, the dielectric phenomena have become more 

general and fundamental, as it has the origin with the dielectric polarization. 
In this Unit we have consider the problems of electrostatics in the absence of matter. Now we 

consider the phenomena in the medium other than empty space (vacuum) such as solid or liquid 

insulator, alternatively called dielectric the theory of dielectric was begun by Michael Farady, in 

1837, and subsequently developed by Maxwell. 

The properties of dielectric may vary from point to point i.e., it may not be homogeneous and in 

the neighbourhood of a point, the properties of a dielectric may not be same everywhere i.e. it 

may not be isotropic. 

 

4.2 OBJECTIVES 
The Main objectives of the present unit are: 

(i) To know about the Dielectrics. 

(ii) To study about polarization vector P. 

(iii) To know about electric field of polarized piece of a dielectric. 

(iv) To know about potential of polarized piece of a dielectric. 

(v) Gauss’s law of a dielectric. 

 

4.3 DIELECTRIC 
A dielectric is a substance in which  all the electrons are tightly bound to the nuclei of the atom i. 

e., no free electron are available to carry current . Thus substances which do not permit the 

passage of electric charge are called dielectric or insulators. The electric conductivity of a 

dielectric is very low (the conductivity of a dielectric is zero). Example: Certain substances such 

as glass, plastic quartz, mica, resins, waxes and oil etc. 
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4.3.1 Dielectric Constant 

The theory of dielectric was begun by Faraday and subsequently by Maxwell. Using a simple 

electroscope and two parallel plate capacitors Faraday, discovered that dielectric materials can 

conduct small conductivity. He constructed two identical capacitors, in one of which he placed a 

dielectric. When both capacitors were charged to the same potential difference, it was found that 

the charge on the capacitors with dielectric is greater than that without. Since q is large for same 

V it follows from C = 
𝑞

𝑉
  that the capacitance of a capacitor increases if dielectric is between the 

plates.  

The ratio of capacitors after and before introducing the dielectric is known as dielectric 

constant (K) of the material. Thus if c is the capacitance with dielectric materials and Co that in 

vacuum 

i.e.,         𝐾 = 
𝐶

𝐶0
     ....... (1) 

The constant K is also called relative permittivity, specific inductivity capacitance or dielectric 

coefficient.It is independent of the shape and size of the capacitor but its value varies widely for 

different materials. For vacuum K = 1 (by definition), for air 1.006, for glass around 6 and so on. 

 

4.3.2 Classification of dielectrics 

The molecules of dielectric may be classified as polar and non –polar. 

Non Polar Molecules  

In an atom the negatively charged electrons are distributed around the positively charged nucleus 

in such a way that the centre of electron cloud coincide with centre of nucleus. So in an atom 

there is no separation of positive and negative charge. The atom there for has no dipole moment. 

When two identical atoms combine to form a molecule, again there is no separation of negative 

and positive charge. The molecule formed by two identical atoms does not possess dipole 

moment. Such molecule are called non polar molecule and substance is made up of such 

molecule are called non polar substances. 

H2, N2, O2, CO2, CCI4, C6H6, C6H12, CS2, etc. are some common example of non-polar 

molecules. In a molecule of CO2, the oxygen ions are symmetrically placedwith respect to the 

carbon ion, hence net dipole moment is zero. Thus CO2 is non polar molecule. 

p = p1-p2 = 0                                                   ....... (2) 

 

 

 

                              

 

                                                                     Polar molecules 

When two electrons of different electro negativities combine to form a covalent bond the shared 

electron pair is shifted towards the more electronegative atom as result of which a separation of 

C++++ 

P1 P2 
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positive and negative charge takes place and the bond acquires a dipole moment. Such a bond is 

called polar bond. If the polar bond in a molecule is symmetrically distributed, the resultant 

dipole moment of various polar bonds comes out be to zero. Then the molecule is called non 

polar. On the other hand if the polar bonds in a molecule are not symmetrically distributed, the 

resultant dipole has finite value, then the molecule is polar.   

HCL, CO, NH3, H2O, CHCL3, C6H5Cl, C6H5NO2, C2H5OH etc. are some common example of 

polar molecules.  In HCl molecule, the electron cloud is slightly shifted towards the more 

electronegative atom Cl. The molecule is therefore, a dipole having dipole moment P directed 

from Cl atom to the H atom similarly the co molecule is a dipole having a moment O to C atom. 

In water molecule the two OH bonds are inclined at 1040. Because of higher electro negativity of 

oxygen, the O-H bond acquires polarity with negative ends at the oxygen atom and the positive 

at the hydrogen atom. 

p = [p1
2 + p2

2 + 2p1p2cosθ]1/2 ....... (3) 

  Where p1 = p2 is the dipole moment of one O-H bond and θ = 1040 

 

4.3.3 Polarization of dielectric 

The phenomenon of polarization may be illustrated here from elementary atomic view. When a 

dielectric material is placed in electric field, the positive and negative charge of non-polar 

molecules or atoms experience electrostatic forces in opposite directions. Therefore the centres 

of gravity of the two charges are separated from each other. The molecules thus acquire an 

induced electric dipole moment in the direction of the field. 

When an electric field is applied on polar molecules (permanent dipole), the forces on a dipole 

give rise to a couple, whose effect is to orient the dipole along the direction of electric field. The 

stronger field, the greater is the aligning effect. This alignment is however, incomplete due to the 

thermal agitation of the molecule (the alignment become more and more perfect as the electric 

field is increase or the temperature is decreased).Thus non polar molecules become  induced 

dipole whereas polar molecules are oriented  by the field and therefore have their dipole 

moments increased. The orientation of induced dipoles or of permanent dipoles in an external 

electric field is such as to set the axis of dipoles along the field.  This phenomenon is known as 

electric polarization.  

There is a main difference between these two mechanisms. The polarization of non-polar 

molecule is independent of temperature. As polar molecule are undergoing thermal motion hence 

are randomly oriented. Thus the polar molecule can aligned perfectly with the smallest external 

electric field at about absolute zero. 

 

4.3.4 Effect of Polarization on Electric Field within the dielectric  

Suppose a slab of dielectric material is placed in the uniform electric field E0 set up between the 

parallel plates of a charge capacitor. The slab becomes electrically polarized i.e. its dipole are 

oriented in the direction of the field. The net effect is appearance of negative charge on one face 

of the slab and an equal positive charge on opposite face. The polarization charges induced on 
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the two faces of the slab produces their own electric field E, which opposes the external field E0. 

Hence the resultant field E within the dielectric is smaller than E0but point as in same direction 

as E0 (E= E0 - E’). The field in the rest of the free space is still E0. Hence we conclude thatwhen 

a dielectric is placed in an electric fieldthe field within the dielectric is weakened (but not 

reduced to zero). 

 

 

 

 

 

 

 
Figure 1 

The charges within the polarised dielectric or those appearing at its surfaces are known as 

fictious charges or bound charges or polarisation charges and the charges on the plates of 

condenser are called free charges or real charges. If we assume that all the molecules are 

polarised to the same extent then the bound charges within the main body of dielectric will 

neutral one another because the negative side of one polarised molecule is adjacent to the 

positive side of its neighbour. However at the surface of the dielectric, in contact with the plates, 

the bound charges are not neutralised. This causes the field in the dielectric to become smaller 

than in the free space. 

4.4 ELECTRIC POLARIZATION VECTOR P 
When a dielectric is placed in an electric field, its molecules become electric dipoles and the 

dielectric is said to be electrically polarised. The state of polarisation is described by polarisation 

vectorP, which is defined as the dipole moment per unit volume of dielectric material. The 

polarisation vector is related to bound charges. 
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Figure 2 

 

Let us consider a slab of homogeneous isotropic dielectric material of thickness l and face area 

A. Let it be placed perpendicular to a uniform electric field between the parallel plates of a 

capacitor having free charges +q and –q. The slab is polarised. Let –q’ and +q’ be the bound 

charges induced on its end faces (figure 2). 

The induced electric dipole moment of the slab as a whole is  q’l and its volume is Al. The 

magnitude of the electric polarisation is, therefore, 

P = 
𝑞′𝑙

𝐴𝑙
= 

𝑞′

𝐴
  ....... (4) 

 

Now P may also be defined as the induced surface charge per unit area i.e., the surface density of 

bound charges (σp) in dielectric 

            P = σ’
p  ........(5)  

 

Thus for a homogeneous isotropic dielectric, the electric polarisation P is numerically equal to 

the surface density of the induced charge appearing at the ends of dielectric block. 

The unit of P is same as of charge density i.e., coulomb/m2. It is zero for vacuum. The direction 

of P is from the negative induced charge –q’ to the positive induced charge +q’ as for any dipole. 

Equation (5) can be generalised by considering the case when the dielectric surface is not to P 

(figure 2). Let the normal to the surface plane XY makes an angle θ with the direction of P. 

Let σp be the surface charge of found charges. The dipole moment of the slab is σpAl and its 

volume is (A cosθ)l. The magnitude of polarisation vector is  

P = 
𝜎𝑃𝐴𝑙

(𝐴𝑐𝑜𝑠𝜃)𝑙
 

σp = P cosθ = P.n    ....... (6) 

 

where n is a unit vector normal to the surface. 
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4.5 FIELD OF A POLARIZED PIECE OF DEELECTRIC 
If a dielectric is uniformly polarised, polarisation charges appear only at the surface. In case of 

non-uniform polarisation charges also appear within the body of the dielectric. We have seen that 

in case of uniform polarisation the surface density of polarisation charge is equal to the normal 

component of polarisation vector. In what follows we shall see that in case of non-uniform 

polarisation the volume density of polarisation charge is equal to the negative divergence of 

polarisation vector. 

Consider a volume element dτ at point r’ (x’, y’, z’) inside the dielectric. The point of observation 

P lies at point r” (x”, y”, z”). The position vector of field point P relative to volume element 

(source point) dτ is r (=r” – r’). The dipole moment associated the volume element is Pdτ, where 

P is polarisation vector. The potential at point P due to charge in volume element is 

dφ = 
1

4πε0

𝐏.𝐫

𝑟3 𝑑τ 

 

Hence the potential of entire piece of polarized material is  

                        φ = 
1

4πε0
∫

𝐏.𝐫

𝑟3 𝑑τ 

where the integration is to be performed over the volume occupied by the dielectric piece. The 

above expression for potential can be written as 

                        ϕ= - 
1

4πε0
∫𝐏 . (𝛁.

1

𝒓
) 𝑑τ ....... (7) 

 

 

 

 

 

 

 

 

 

Figure 3 

 

4.6 POTENTIAL OF A PIECE OF POLARIZED DIELECTRIC 
Here the operator ∇ involves differentiation with respect to observer’s coordinates (x”, y”, z”) 

'' '' ''
ˆˆ ˆd d d

i j k
dx dy dz

     

We define 

'

' ' '
ˆˆ ˆd d d

i j k
dx dy dz
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Which involves differentiation with respect to source coordinates (x’, y’, z’). It can be shown 

that 

𝛁 =  −𝛁′ 

Making use of this result we can write equation (7) as  

ϕ =  
1

4πε0
∫𝐏 . (𝛁′.

1

𝒓
) 𝑑τ     ....... (8) 

 

To transform equation (7) into more convenient from we make use of the following identity 

∇′(φ𝐀) =  ∇′φ. 𝐀 +  𝛗∇′. 𝐀 

To use this result we make the following replacement. A→P, ϕ → 
1

𝑟
 . Doing so we obtain 

P.∇′ 1

𝑟
=  ∇′ (

𝐏

𝑟
) −

1

𝑟
∇′ . 𝐏 ....... (9) 

In view of equation (9) we can write equation (8) as 

                                                            ϕ =  
1

4πε0
∫ [∇′ (

𝐏

𝑟
) −

1

𝑟
∇′ . 𝐏] 𝑑τ 

=  
1

4πε0
∫∇′ 𝐏

𝑟
𝑑τ −

1

4πε0
∫

∇′.𝐏

𝑟
𝑑τ    ....... (10) 

 

Transforming the first integral on the right hand side into surface integral by divergence theorem 

we have 

            ϕ = 
1

4πε0
∫

𝐏.𝐧

𝑟
𝑑𝑆 + 

1

4πε0
∫

∇′.𝐏

𝑟
𝑑τ   ....... (11) 

 

The first term on the right hand side of equation (11) looks like the potential due to a surface 

charge distribution with surface charge density 

 σb = P.n  ....... (12) 

And the second term looks like the potential due to a volume charge distribution with volume 

charge density 

ρb = −𝛁.𝐏   ....... (13) 

In terms of newly defined charge densities σb  and ρb the potential of the polarized dielectric is 

            ϕ = 
1

4πε0
∫

σ𝑏𝑑𝑆

𝑟
   +   

1

4πε0
∫

𝜌𝑑𝜏

𝑟
 ....... (14)               

 

Proof of result                                    ∇ =  −∇′ 

r = r’’ – r’ = (x’’ – x’)i + (y’’ – y’)j  + (z’’-z’)k 

r2 = (x’’ – x’)2 + (y’’ – y’)2  + (z’’-z’)2 

2r
𝜕𝑟

𝜕𝑥′
= −2(𝑥 ′′ − 𝑥′) →

𝜕𝑟

𝜕𝑥′
= 

𝑥′′−𝑥′

𝑟
 

Similarly,   
𝜕𝑟

𝜕𝑦′
= 

𝑦′′−𝑦′

𝑟
  and     

𝜕𝑟

𝜕𝑧 ′
= 

𝑧 ′′−𝑧′

𝑟
 

Now  ∇′ (
1

r
) = i

∂

∂x′
(
1

r
)  +  j

∂

∂y′
(
1

r
)  +  k

∂

∂z′
(
1

r
) 

          = −
1

r2
∂r

∂x′
 i −

1

r2
∂r

∂y′
j −

1

r2
∂r

∂z′
k   
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          = 
1

𝑟2

𝑥′′−𝑥′

𝑟
  i + 

1

𝑟2

𝑦′′−𝑦′

𝑟
j +  

1

𝑟2

𝑧 ′′−𝑧 ′

𝑟
k 

          = 
𝐫

𝑟3 

          = - ∇ (
1

r
) 

Hence                                                               ∇ =  −∇′ 

 

4.7 GAUSS’S LAW IN DIELECTRIC 
The well-known gauss’s law in electrostatics states that that electric flux through any closed 

surface is equal to 1/ ε0 times the net charge enclosed by the surface. 

 

 

 

 

 

 

 

 

 

Figure 4 

Let us consider a parallel plate capacitor with plate area A having vacuum between its plates 

(figure 4) +q and –q be the charges on the plates of the capacitor and E0 be the uniform electric 

field between the plates. Let PQRS be a Gaussian surface. The electric flux through this surface 

is  

∮E0. 𝑑𝑆, 

where dS is a small vector area on the surface. The net charge enclosed by the surface is +q. 

Therefore by Gauss’s law 

∮E0. 𝑑𝑆 =  
𝑞

ε0
 

But      E0.dS = E0A 

∴E0 A = 
𝑞

ε0
     ....... (15) 

Or                  E0  =  
𝑞

ε0𝐴
 

Now, let us apply this law to a parallel plate capacitor filled with a dielectric material of 

dielectric constant K.  

A negative charge –q’ is induced on one surface and an equal positive charge +q’ on the other. 

These induced charges produce their own field which oppose the external magnetic field E0. Let 

E be the resultant field within the dielectric. The net charge enclosed by the Gaussian surface 

PQRS is now q-q’. In this case, Gauss’s law gives  

∮E0. 𝑑𝑆 =  
𝑞

ε0
   ....... (16)                            
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Or                   EA =
𝑞−𝑞′

ε0
 

E =
𝑞−𝑞′

ε0𝐴
  ....... (17) 

We know that                                             
𝐸

𝐸0
= 

1

𝐾
 

Or                                                                   E0 = EK 

 

 

 

 

 

 

 

 

Figure 5 

 

Putting this value of E0 in equation (15), we have                             

E0 = 
𝑞

𝐾ε0𝐴
 

Inserting it in equation (17), we have 

𝑞

𝐾ε0𝐴
= 

𝑞−𝑞′

𝐾ε0𝐴
 

   or                                              

q’ = 𝑞 (1 −
1

𝐾
)  ....... (18) 

This equation shows that the induced surface charge q’ is always less than free charge q and is 

zero when K = 1 or the dielectric is not present. 

From equation (18) we find that q – q’ = 
𝑞

𝐾
.  

Substituting this value of equation (17), The Gauss’s law in presence of dielectric takes the 

following form 

0

.
q

E dS


  

or
0

.
q

KE dS


       ....... (19)                        

We note that while using this form of Gauss’s law, the charge q contained within the Gaussian 

surface is taken to be ‘free’ charge only. The induced charge q’ has been taken into account by 

the introduction of K on left hand side. 

4.8 TERMINAL QUESTIONS 

4.8.1 Long type Questions: 

1. Differentiate between polar and non-polar molecules. Explain polarisation in them. 

2. Differentiate between electronic, ionic and orientational polarisability. 
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3. What do you understand by dielectric polarisation? Explain partial and complete 

polarisation. 

4. Deduce Gauss’s Law in dielectrics. 

5. Explain the effect of Polarization on electric field within the dielectric. 

 

4.8.2 Short type Questions: 

1. What is a dielectric? Give some examples. 

2. What is dielectric constant? 

3. Explain polar molecules. 

4. Explain Non-polar molecules. 

5. What is electric Polarisation of Vector P? 

6. Explain Gauss’s Law in Dielectrics. 

7. Explain Field of a Polarized piece of Dielectric. 

 

4.8.3 Objective type Questions: 

1. Which one of the following substances is dielectric: 

(a) Copper        (b) Mica        (c) Germanium            (d) Tungsten 

2. CO2 molecules is: 

(a) Polar       (b)  Non-Polar      (c) Natural       (d) Basic 

3. HCl molecule is : 

(a) Polar       (b)  Non-Polar      (c) Neutral      (d) Conductor 

4. Centres of positive and negative charges are not coincident in : 

(a) O2          (b)   N2         (c) CO2      (d) NH3 

5. Polar molecule is: 

(a) O2          (b)   N2         (c) H2      (d) H2O 

6. Non-Polar molecule is: 

(a) H2O          (b)   CCl4         (c) CHCl3      (d) H2O 

7.  Following is not a dielectric: 

(a) Wax          (b) Mercury       (c) Glass       (d) Mica 

8. Unit of Polarisation vector  P is: 

(b) Coulomb    (b) Coulomb metre   (c) Coulomb/metre-2   (d) Newton/coulomb 

4.9  ANSWERS 
Objective type Questions: 

(b)   2. (b)   3. (c)   4. (c)   5. (d)    6. (b)   7. (b)  8. (c)  
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2. M.Faraday, Phil.Trans 128:1 79 265 (1837). 
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UNIT 5  BOUNDARY CONDITIONS OF FIELD 

VECTORS, CAPACITORS FILLED 

WITH DIELECTRICS 
 

Structure 
5.1 Introduction 

5.2 Objectives 

5.3 Electric Field Strength 

5.4 Electric Polarization 

5.5 Electric Displacement Vector 

5.6 Three Electric Vectors 

5.6.1 D and P in terms of  E  

5.7 Restatement of Gauss’s law 

5.8 Concept of Capacitance 

5.8.1Capacitance of an isolated spherical conductor 

5.8.2 Parallel plate capacitor with dielectric 

5.9 Dielectric Constant 

5.10 Increase of Capacitance within the Dielectric Medium 

5.11 Dielectric Strength 

5.12 Parallel Plate Capacitor with a Dielectric 

5.13 Force between Plates of a Charged Parallel Plate Capacitor 

5.14 Combination of Capacitors 

5.15 Spherical Capacitor 

5.16 Cylindrical Capacitor 

5.17 Energy Stored in a Capacitor 

5.18 Terminal Questions 

5.19 Answers  

5.20 Suggested Readings 
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5.1 INTRODUCTION 
In this Unit we have discussed three electric vectors (electric fields strength, electric polarization 

and electric displacement vectors), restatement of Gauss’s law, dielectric strengths and concept 

of capacitance in details. 

 

5.2 OBJECTIVE  
The Main objectives of the present unit are: 

(i) To define three electric vectors 

(ii) To define Restatement of Gauss’s Law 

(iii) To define capacitors 

(iv) To define Dielectric constant and their strength 

(v) To define combination of capacitors and their types 

(vi) To define Energy stored in a capacitor 

 

5.3 ELECTRIC FIELD STRENGTH E  
The electric field strength at any point in an electric field is defined as the force experienced per 

unit infinitesimal positive charge (q0). If F is the force on small charge q0, then   

 

i.e.                                                  E= lim
𝑞0→0

𝐹

𝑞0
 

 

The direction of E is along the direction of force. The unit of E is Newton/coulomb or volt/metre. 

 

 

5.4 ELECTRIC POLARIZATION P  
When a dielectric is placed in an external electric field, its molecules gain electric dipole moment 

and dielectric is said to be polarised. The electric dipole moment induced per unit volume of the 

dielectric material is called the electric polarisation of the dielectric. It is denoted by a vector P. 

If σp  is the surface charge densities of fictitious charges appearing at the end faces of a dielectric 

block, then P= σp 

The unit of polarisation is coulomb/metre2. 

 

5.5 ELECTRIC DISPLACEMENT VECTOR D  
Let σ be the surface density of free charges on the capacitor plates and σ’ of the bound charges 

on the dielectric. The magnitude of the electric fields due to σ and σ’ are 

            E0 = 
σ

ε0
    and E’ = 

σ’

ε0
 

The magnitude of the resultant field within the dielectric is therefore, 

            E=E0 - E’            (the fields are oppositely directed) 
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Or                                                                  

E= σ/ε0 – σ’/ε0                       

Or                                                                

ε0E = σ – σ’ 

Or                                                                   

σ = ε0E + σ’                                                          ....... (1) 

The last term of above equation (σ’) is the induced charge density which is equal to the 

magnitude of electric polarisation P. So the above equation may be written as  

           σ = ε0E + P     ....... (2) 

 

The quantity on the right hand side of above equation is known as electric displacement D. 

Thus  

D = ε0E + P    ....... (3) 

From above two equations we find  

 D = σ                                                                            ....... (4) 

Since E and P are vectors, D is also a vector. This displacement vector is an important addition 

which is of great use is Maxwell’s electromagnetic equation to explain displacement current. In 

vector form equation (3) becomes 

D =  ε0E + P  ....... (5)  

 

5.6 THREE ELECTRIC VECTORS 
E, P and D are three electric vectors related to each other as shown in equation 5. These vectors 

may vary in magnitude and direction from point to point in complicated problems of 

electrostatics. But in simple case of a parallel plate capacitor filled with dielectric, each of three 

has a constant value or every point in the dielectric.   

 From the definition of D, P and E, we note the following- 

 

(1) D is connected with the free charge only. The displacement field can be represented by 

lines of displacement just as electric field is represented by lines of force. The lines of D 

begin and end on the free charges (figure 1). 

(2) P is connected with the induced surface charge or polarisation charge only. It can also be 

represented by lines known as lines of P. These lines begin and end on the polarisation 

charges i.e., induced charges due to polarisation. The flux of P equals the negative of the 

bound (induced) charge. Clearly P is zero except inside the dielectric. 

(3) The electric field intensity E is connected with the charge actually presents (free and 

bound charge). The lines of E depend upon the presence of both kinds of charges. 

(4) Unlike the electric field E and the polarisation P, the electric displacement D has no clear 

physical meaning. The only reason for introducing it is that it enables one to calculate the 

electric field in the presence of dielectric without knowing the distribution of polarisation 

charges. The introduction of D is a convenience and not a necessity. 
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(5) The unit of E is Newton/Coulomb while that of P and D is Coulomb/meter2. 

 

 

 

 

 

 

 

 

 

 

 

Figure1 

 

5.6.1   D and P in terms of E  

The vectors D and P can both be expressed in terms of E alone. 

We know that         E0 = σ/ε0                     and       D = σ   .....(see equation 4) 

E0 = D/ε0           or  D = ε0E0   ....... (6)       

Also        E0= KE                 or D= Kε0E....... (7) 

Equation (6) and (7) also show that the displacement D has the same value in the dielectric and 

in vacuum (where K = 1, E = E0). Hence the use of D is more convenient rather than E. 

 

Similarly we can also write a relation between P and E.  

Equation (2) gives        P = σ - ε0E 

But we have seen above that  

D = σ = Kε0E   

P = Kε0E- ε0E 

     or                                        P = (K – 1) ε0E 

 

This clearly shows that in vacuum (K = 1), the polarisation P is zero. 

 

5.7 RESTATEMENT OF GAUSS”S LAW 
The Gauss’s law in presence of dielectric has the following form 

0

1
. f

V
S

KE dS dV


   

where V is the volume enclosed by the surface S. 

But the relation D = Kε0E allows us to write the Gauss’s law in another form 

∮𝐃. 𝑑𝑆 = 𝑞 = ∫ ρfdV   ....... (8) 

Where q represents the free charge only, this tells us that the surface integral of the normal 

component of D over a closed surface equals the free charge enclosed by the surface. 
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Transforming the surface integral into volume integral using divergence theorem we have 

           ∫Vdiv D dV = ∫V ρfdV 

Or    ∫V (div D - ρf)dV  = 0 

Since V is arbitrary, we have 

Div D = ρf           or               ∇.𝑫 =ρf   ....... (9) 

This is Gauss’s law in differential form in a dielectric.    

 

5.8 CONCEPT OF CAPACITANCE 
When water is poured in a vessel, the level of the water in the vessel rises. When heat is given to 

a conductor, the temperature (i.e., thermal level) of conductor increases.  In the same way when 

electrical charge is given to a conductor, its electrical potential (i.e. electrical level) increases. It 

is observed that the increase in potential (V) of conductor is directly proportional to charge (Q) 

given to it i.e., 

   V α Q 

           Or            Q α V 

           Or            Q =C V       ....... (10) 

 

Where C is a constant for a given conductor and depends on the shape and size of the conductor, 

the surrounding medium and the presence of the other neighbouring conductors. This constant is 

called the capacitance of the conductor.  

Form the equ (10),  

           C = Q/V        ....... (11) 

 

i.e, the capacitance of the conductor is the ratio of the charge given to and rise in potential of the 

conductor. 

If V=1 volt,C=Q, i.e., the capacitance of the conductor is numerically equal to the charge 

required to be given to conductor which raises its potential level by 1 volt. 

In SI system the unit of capacitance is coulomb/volt, called the farad (F). 

 

i.e.                          1 farad =
1 𝑐𝑜𝑢𝑙𝑜𝑚𝑏

1 𝑣𝑜𝑙𝑡
 

 

Thus, the capacitance of conductor is 1 Farad if 1 coulomb of charge raises its potential by 1 

volt. 

In practice farad is a very big unit, therefore usual units used are micro farad (µF) and picofarad 

(pF) 

 1µF=10-6 F 

and     1  pF=1µµF=10-12 F 

When water is poured in a vessel continuously, we observe that initially level of water in the 

vessel rises, then vessel is completely filled and finally water begins to flow out. In the same way 

when charge is given to the conductor continuously, its potential rises, becomes maximum and 
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finally when insulation capacity of the surrounding medium vanishes, the charge begins to leak 

in the medium. Thus a given conductor in a given medium cannot attain the amount of charge 

more than a definite maximum amount of charge. This definite maximum charge is determined 

by capacitance of conductor. Thus the capacitance conductor is its capacity of collecting the 

charge. 

Dimensions of capacitance: 

Capacitance C= Charge (Q)/Potential (V) 

As charge =current x time 

So dimensions of charge, Q= [AT] 

Potential, V=Work (W)/Charge (Q) 

    [ML2T-2]   

Dimensions of potential V =     = [ML2T-3A-1]  

[AT] 

 

Dimensions of charge (Q)                 [A T] 

(C)=        = 

Dimensions of potential (V)       [ML2T-3A-1] 

 

 

So    Dimensions of capacitance = [M-1L-2T4A2] 

 

5.8.1 Capacitance of an isolated spherical conductor 

Suppose an insulated spherical conductor of radius R is placed in air. The word isolated implies 

that there is no other conductor near by the sphere. Suppose a charge +Q Coulomb is given to 

spherical conductor. As charge given to a conductor spreads on its outer surface such that the 

potential on each point of conductor becomes ‘same’. Thus, the surface of sphere becomes 

equipotential surface. As the electric lines of force are always perpendicular to equipotential 

surface; therefore, the electric lines of force emerge normally from the surface of sphere; and 

they appear to come from centre O radially outward. Consequently to determine the effect of 

charged sphere; at the surface points and external points, we can assume that the whole charge 

(Q) given to sphere may be supposed to be concentrated at its centre. Hence assuming charge (+ 

Q) situated at centre O of sphere, the potential at the surface of sphere,  

 

 

 

 

 

 

 

                           Figure 2 
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V= 
1

4πε0
.Q /R 

                 Where 
1

4πε0
   =9.0 x 109      newton-meter2/coulomb2   

Capacitance of isolated sphere 

 

C=
𝑄

𝑉
  =

𝑄

(
1      𝑄

4𝜋𝜀0 𝑅)
)
 

 

C=4πԐ 0 R    ....... (12) 

 

If R is in meter, C is in Farad, then  

C α R 

Clearly, capacitance of a spherical conductor is directly proportional to its radius. 

    C0  

Remark: From (12),              Ԑ 0 =   

4πR 

From this expression, the unit of permittivity of free space is farad/meter. 

From the Coulomb’s law of electrostatic force 

F = 
1

4πε0
q1q2/r

2 ; the unit of ε0 coulomb2/newton-meter2. 

Thus, farad/meter and coulomb2/newton-meter2 units of same physical quantityε0. 

 

Example 1:  If 10 micro coulomb charge given to a conductor increases its potential by    2.5 

volt. What is the capacitance of the conductor? 

Solution: Here Q=10 µC = 10x10-6 coulomb, V=2.5 volt 

                Capacitance       C=
𝑄

𝑉
 

                                             = 10x10-06/ 2.5  

                                            = 4.0x10-6 farad 

                                            = 4.0 µF 

Example 2: Assuming the earth be a spherical conductor of radius 6400 km, calculate its 

capacitance. 

Solution: The capacitance of a spherical conductor in air 

                C=4πε0R 

                    4πε0 = 1/9x109 C2/N-m2 

                      R= 6400x103m 

                   C= 6.4x106/9x109 =7.11x10-4F 
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5.8.2 Parallel Plate Capacitor with Dielectric 

It consist of two plate metallic plates A and B, placed parallel to each other .The plate may be of 

any shape, e.g., circular ,square and rectangular. The plates must be similar and at small 

separation. The plates carry equal and opposite charge +Q and –Q respectively. For this the plate 

is given a charge +Q and outer surface of plate B is earthed. When charge Q is given to plate A, 

the charge (-Q) is induced at inner surface of plate B and charge (+Q) at outer surface as outer 

surface of plate B is earthed, its charge (+Q) is transferred to earth. Thus the net charge on plate 

A is –Q and on the plate B it is (-Q). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3 

In general the electric field between the plates due the charges +Q and -Q remains uniform, but 

at edges, the electric lines of the force deviate outward. If separation between the plates is much 

smaller than the size of the plates, the electric field strength between the plates may be assumed 

uniform. 

Suppose A is the area of each plate, d the separation between the plates, K the dielectric constant 

of the medium filled between the plates. If σ is the magnitude of charge density of plates, then 

/Q A   

The electric field strength between the plates  

 E= σ / K Ԑ 0 

Where   Ԑ 0 =permittivity of free space. 

The potential difference between the plates  

            VAB = Ed = σd/K Ԑ0     ....... (13) 

Putting the value of    σ, we get     

VAB= 
(
𝑄

𝐴
)𝑑

𝐾𝜀0
  =

𝑄𝑑

𝐾𝜀0𝐴
 

Capacitance of capacitor 

C= Q / VAB = Q/(Qd/K Ԑ0A)  

C=
𝐾𝜀0𝐴

𝑑
   ------(14) 
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This expression for the capacitance for the parallel plate capacitor, clearly the capacitance of a 

parallel plate capacitor is 

(i) Directly proportional to the area of each plate. 

(ii) Directly proportional to the dielectric constant (or permittivity)of the medium. 

(iii) Inversely proportional to the distance between the plates. 

(iv) Independent of metal of plates. 

Thus for high capacitance of a parallel plate capacitor. 

(i) Area (A) of the plates should be large  

(ii)  The separation (d) between the plates should be small  

(iii)  The medium between the plates should be of high electric constant (K). 

 

5.9 DIELECTRIC CONSTANT 
If medium between the plates be air (or vacuum); then K=1, therefore capacitance of air 

capacitor  

            C0   =    
𝜀0𝐴

𝑑
   ...... (15)  

Dividing equation(14) by (15) 
𝐶

𝐶0
=K 

Or C  =KC0                                           ....... (16) 

 

This shows that medium of dielectric constant K is introduced between plates of parallel plate 

capacitor,the capacitance of the capacitor increases K-times. 

From the equation(16), the dielectric constant of the medium may be define as the ratio of 

capacitance of the capacitor filled with medium to the capacitance of the same capacitor filled 

with the vacuum (or air). 

 

5.10 INCREASE OF CAPACITANCE WITH IN THE 

DIELECTRIC MEDIUN  
Suppose a dielectric medium is filled between the plates of the parallel plate capacitor.Every 

matter is constituted of molecules or atoms. In an atom positive charge is concentrated at the 

nucleus and the negatively charged electrons revolve around the nucleus in orbits. In dielectric 

medium the electron are strongly bound to the nucleus and in general the centre of positive and 

negative charges in each atom/ molecules coincide. When capacitor is charged, an electric field 

is established between the plates of the capacitor. Due to this electric field, the centres of positive 

charges are displaced along the direction of electric field or towards plate B; while the centres of 

negative charges are displaced opposite to the direction of electric field or towards the plate A. 

Thus the centres positive and negatively charges of each molecules/atom are displaced and 

molecule is said to be polarized. This causes an electric field Ei between the dielectric 

medium,which is opposite to direction of electric field produced due to charges on the plates. 
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Thus,due to presence of dielectric medium,the resultant electric field between the plates is 

reduced and hence the potential difference (V=Ed) across the plates is reduced. Consequently the 

capacitance of capacitor (C=Q/VAB) is increased. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3 

 

5.11 DIELECTRIC STRENGTH 

When potential difference between the plates of capacitor is increased continuously the electric 

field between capacitor plates will go on increasing and consequently the separation between 

positive and negative charges will go on increasing and a stage will come when the opposite 

charges of molecule will break off from molecule and become free. In this situation the dielectric 

willnot remain insulating conductor. As a result capacitor will be discharged. 

The minimum electric field strength applied to dielectric at which its electric breakdown takes 

place is called the dielectric strength. In other words, “The dielectric strength of a dielectricis the 

maximum electric field that it can withstand without breakdown of its insulation property”. It is 

constant for a given dielectric. The minimum value of potential difference across capacitor plates 

at which dielectric breaks down is called the breaking potential difference. It is to be noted that 

dielectric strength for a material remains fixed, but the breaking potential depend on the 

thickness of dielectric, i.e.  

Breaking potential difference =dielectric strength x thickness.   

The dielectric strength of the vacuum is infinity, for air it is 3 x 106V/m, for plastic it is 107V/m 

and for mica it is 1.6 x 108V/m. 
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Figure 4 

5.12 PARALLEL PLATE CAPACITOR WITH A DIELECTRIC  

Consider a parallel plate capacitor, area of each plate being A, the separation between the plates 

being d. Let a dielectric slab of dielectric constant K and thickness t< d be placed between the 

plates. Thickness of air between the plates = (d-t). If charge on plates be +Q and –Q, then surface 

charge density   

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5 
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σ=  
𝑄

𝐴
 

 

The electric field between the plates in air 

 

                 E1 = 
σ

ԑ0
=

𝑄

ԑ0A
 

The electric field between the plates in slab 

E2 = 
σ

Kԑ0
=

𝑄

Kԑ0A
 

The potential difference between the plates 

       VAB= Work done in carrying unit positive charge from one plate to another 

             = ΣEx (as field between the plates is not constant) 

             = E1(d-t)+E2t =
𝑄

ԑ0A
 (d-t) + 

𝑄

Kԑ0A
t 

            VAB = 
𝑄

ԑ0A
[ d-t+ 

𝑡

𝑘
] 

Capacitance capacitor, C = 
𝑄

VAB
 = 

𝑄
𝑄

ԑ0A
[ d−t+ 

𝑡

𝑘
]
 ……(17) 

                                     C = 
𝜀0𝐴

[ d−t+ 
𝑡

𝑘
]
  =  

𝜀0𝐴

𝑑−𝑡(1−
1

𝑘)

 

This is the required expression. As K> 1, it is obvious that due to introduction of slab of 

thickness t and dielectric constant K between the plates of a parallel plate capacitor, the effective 

distance in air is reduced by (1-
1

𝐾
)t ; and so the capacitance of capacitor increases. 

5.13 FORCE BETWEEN PLATES OF A CHARGED PARALLEL 

PLATE CAPACITOR  
The plates of the parallel plate capacitor are oppositely charged, hence each plate must 

experience force of attraction. 

Consider parallel plate capacitor of plate area A and separation between the plates d. Each 

charged plate produces an electric field and the other plates are placed in the vicinity of this 

electric field. Let Q be the charge and σ the surface charge density on each plate. Clearly 

 

σ= 
𝑄

𝐴
 

 

The electric field produced due to either charged plates, 

 

 

 E1 =      
σ

2ԑ0
      ....... (18) 

 

Because charge on plate is accumulated on one side, Due to this electric field,the force of 

attraction on other plate =QE1 
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=   Q
σ

2ԑ0
       (using (18)   ....... (19) 

If  E is the electric field between the plates, then 

            E    =   
𝜎

𝜀0
 

or  

σ  =  ԑ0E                                  ....... (20) 

So Force of attraction between the plates 

 

                F= (1/2)QE      ....... (21) 

  

 

This is required expression .The factor ½ appears because the electric field in the vicinity of 

charge Q is produced by one plate only,so  

E1=1/2 E. 

If we put      E= 
𝜎

ԑ0
= 

𝑄

A ԑ0
in equation (21),we get 

 

 F = 
Q2

2 ԑ0 A
.......(22) 

 

 

5.14 COMBINATION OF THE CAPACITORS  
If the capacitor of required capacitance is not available, then the two and more capacitors may be 

combined to provide the required capacitance. There are two main method of combination. 

1. Series combination 

The reduced the capacitance, the capacitors are connected in series. In this combination the first 

plate of first capacitor is connect to first plate of second capacitor, the second plate of second 

capacitor is connected to first plate to third plate capacitor and so on; the second plate of last 

capacitor is connected to the earth. In fig.6 three capacitors of capacitance C1, C2, C3 are 

connected in series between point A and D. 

Suppose by means of electric source a charge +Q is given to first plate of first capacitor C1. By 

induction –Q charge is induced on the inner surface of second plate of first capacitor and a +Q on 

inner surface of first plate of second capacitor C2and so on (fig 6).Thus first plate of each 

capacitor has charge +Q and second plate of each capacitor has charge –Q. 

Let the potential difference across the capacitor C1, C2, C3 be V1,V2,V3 respectively. As the 

second plate of first capacitor C1 and first plate of second capacitor C2 are connected together, 

therefore their potentials are equal. Let this common potential be VB. Similarly the common 

potential of second plate of C2 and first plate of C3 is Vc. The second plate of capacitor C3 is 

connected to the earth, therefore its potential VD =0. As charge flows from higher potential to 

lower potential, therefore VA>VB>VC>VD. 
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For the first capacitor V1 = VA-VB = 
𝑄

C1
    ....... (23) 

 

For the second capacitor V2 = VB - Vc = 
𝑄

C2
   ....... (24) 

 

For the third  capacitor V3 = Vc – VD = 
𝑄

C3
  ....... (25) 

 

 

 
Figure6 

 

Adding equations (23),(24) and (25),we get 

V1+V2+V3  =VA-VD = [1/C1+1/C2+1/C3]          ....... (26) 

 

If V be the potential difference between A and D, then  

            VA - VD  = V 

From (26) we get 

V= (V1+V2+V3) = Q [1/C1+1/C2+1/C3]    ......(27) 

Three capacitor, only one capacitor placed between  A and D such that on given in charge Q, the 

potential difference between its plates become V , then it will be called equivalent capacitor. If 

its capacitance be C then  

 

 V = 
𝑄

𝐶
    ....... (28) 

Comparing equation (27) and (28), we get 
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𝑄

𝐶
  =    Q [1/C1+1/C2+1/C3]     or 1/C = 1/C1+1/C2+1/C3   .......(29) 

 

(i) Thus in series arrangement, “the reciprocal of equivalent capacitance is equal to the sum of 

reciprocal of the individual capacitor”. Infact the equivalent capacitance is even less than the 

lowest capacitance in series. 

(ii) The charge of each capacitor is same. 

(iii)The total potential difference applied across the combination is equal to the sum of potential 

difference across the individual capacitors, i.e.,V=V1+V2+V3. Therefore the series 

arrangement is used to divide a high voltage (which cannot be tolerated by single capacitor) 

among several capacitors. 

 

Remarks: If n capacitors of capacitance C1, C2, C3, ------------Cn are connected in series, the net 

capacitance C will be given by 

1 2 3

1 1 1 1 1
............

nC C C C C
      

2. Parallel Arrangement: To increase the capacitance, the capacitors are connected in parallel 

in this combination the first plate of each capacitor is connect to a common point  A and 

second plate to another common point B. The point A is connected to electric source and 

point B is connected to earth. In figure 7 three capacitors of capacitance C1,C2,C3 are 

connected in parallel.  

 

 

 

 

 

Figure7 

 

Let a charge Q be given to point A by means of an electric source. The first plate of each 

capacitor will be at potential A and second plate will be at zero potential, because it is connected 

to each other. Clearly the potential difference between the plates of each capacitors. 

 VA - VB = VA = V(say) 

 



PHY (N)-102                                                                                                          ELECTRICITY AND MAGNETISM  
& PHY (N)-102L                                                                                                              & LABORATORY COURSE II   

106 
 

The charge Q will be divided on capacitors C1, C2, C3 . 

The charge q1, q2, q3be the charge on capacitors C1,C2,C3 respectively. 

Q=q1+q2+q3                          ....... (30) 

            q1=C1V, q2=C2V,  q3=C3V 

 

Substituting these values in (30), we get 

Q=C1V+C2V+C3V                 ....... (31) 

 

If, in place all three capacitors, only one capacitor of capacitance C be connected between A and 

B; such that on giving it charge Q, the potential difference between its plates be V, then it will be 

called equivalent capacitor. 

If C be the capacitance of equivalent capacitor, then 

Q = CV                                   ....... (32) 

Comparing equations (31) and (32), we get 

 CV=    (C1+C2+C3) V 

            C= C1+C2+C3                   ....... (33) 

 

Thus in parallel arrangement 

(i) The equivalent capacitance is equal to the sum of capacitances of individual 

capacitors (C= C1+C2+C3). 

(ii) The total charge is equal to the sum of charges on individual capacitors                                 

(Q=q1+q2+q3). 

(iii)  The potential difference across each capacitor is same. 

 

Remarks: If n-capacitors of capacitance C1,C2,C3-------Cn be connected in parallel, the net 

capacitance  

C=C1+C2+C3+-----------+Cn 

 

5.15 SPHERICAL CAPACITOR  
A spherical capacitor consists of two concentric metallic spheres. A and B of radii a and b 

respectively (b>a) insulated from each other by dielectric of permittivity ԑ.   Let us find the 

capacitance of spherical capacitor in the following cases.  

Case (i).When the sphere is earthed. If  the inner sphere A be given a charge +Q, then a charge 

–Q will be induced on the inner surface of the sphere B and a charge +Q on the outer surface of 

outer sphere. As the sphere is earthed, the charge +Q induced on the outer surface of outer sphere 

B will flow to the earth. 
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                        Figure8 

Now the electric field strength at a point P distant r from the centre O and within the concentric 

spheres is entirely due to the charge +Q on the inner sphere and is given by 

 

E   =  
1

4πԑ0

𝑄

r2
 r^ 

 

Where   r^ is the unit vector along OP  

The potential difference between two sphere is then, given by 

 

            V=-∫ 𝐸. 𝑑𝑟
𝑎

𝑏
=−∫

1

4𝜋𝜀

𝑎

𝑏
.
𝑄

𝑟2
𝑟^. 𝑑𝑟 

 

            =  - -
𝑄

4𝜋𝜀
∫

1

𝑟2

𝑎

𝑏
dr  = 

𝑄

4𝜋𝜀
[
1

𝑟
] 

           =
𝑄

4𝜋𝜀
[
1

𝑎
−

1

𝑏
] 

If K is dielectric constant of medium, then Ԑ =K Ԑ0 

From which the capacitance of spherical capacitor is given by  

C=
𝑄

𝑉
    =  

𝑄
𝑄

4𝜋𝐾𝜀0
[
1

𝑎
−

1

𝑏
]
=

4𝜋𝐾𝜀0

[
1

𝑎
−

1

𝑏
]
   =    

4𝜋𝐾𝜀0

[
1

𝑎
−

1

𝑏
]
   = 4𝜋𝐾휀0

𝑎𝑏

𝑏−𝑎
 

C=4𝜋𝐾휀0
𝑎𝑏

𝑏−𝑎
 

 

Case (ii). When inner surface is earthed: If charge +Q be given to the outer spherical shell B 

of inner and outer radii b and c respectively, the charge +Q is distributed into two parts (i) charge 

+Qi  spreads on the inner surface of radius b and (ii) charge +Q0 spreads on the outer surface of 

radius c such that 
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                                     Q=Qi+Q0  

Due to induction the Charge –Qi is induced on the inner sphere is earthed, the inner sphere is at 

zero potential. 

If the surrounding objects are at infinite distance from the outer sphere and at zero potential, also 

if the medium between the outer sphere and infinity of permittivity Ԑ, the electric field strength at 

a point for which  

 

 

 

 

 

 

 

 

 

 

            Figure 9 

 

 

r > c is 

0
0 2

0

1
ˆ

4

Q
E r

r
       …….(34) 

and electric field strength at a point for which a<r<b is 

2

0

1
ˆ

4

i
i

Q
E r

r
    …… (35) 

As the potential at infinity and also that of inner sphere is zero, the potential of outer shell may 

be written as  

 

V=-∫ 𝐸0
0

∞
. 𝑑𝑟=-

1

4𝜋𝜀0
∫

𝑄0

𝑟2

0

∞
�̂�. 𝑑𝑟 

=-  
𝑄0

4𝜋𝜀0
∫

1

𝑟2 𝑑𝑟
0

∞
  =

1

4𝜋𝜀0
.
𝑄0

𝑐
    ....... (36) 

We have  V =  
𝑄𝑖

4𝜋𝜀
[
1

𝑎
−

1

𝑏
]     ....... (37) 

Comparing equation (36) and (37), we have 

 
1

      4𝜋𝜀0
.
𝑄0

𝑐
  =     

𝑄𝑖

4𝜋𝜀
[
1

𝑎
−

1

𝑏
] 

 
𝑄𝑖

𝑄0
   =  

𝐾

𝑐

𝑎𝑏

𝑏−𝑎
….(38)  

As the total charge given to the shell B is Q=Q0+Qi, the capacitance of the arrangement is given 

by 



PHY (N)-102                                                                                                          ELECTRICITY AND MAGNETISM  
& PHY (N)-102L                                                                                                              & LABORATORY COURSE II   

109 
 

 

C = 
𝑄0+𝑄𝑖

𝑉
  =

𝑄0+𝑄𝑖
1

  4𝜋𝜀0
.
𝑄0
𝑐

   = 4𝜋휀0𝑐 [1 +
𝑄𝑖

𝑄0
] 

 

= 4πԐ0c[1 +
𝐾

𝑐
.

𝑎𝑏

𝑏−𝑎
] from equation (38) 

=    4πԐ0c+4πԐ0K
𝑎𝑏

𝑏−𝑎
              ....... (39) 

If the outer sphere is surround by concentric earthed sphere of radius d, then capacitance of the 

system may be calculated by similar procedure, keeping d in place of ∞ in the integral of eq. (36) 

this result is  

 

C =  4πԐ0K
𝑎𝑏

𝑏−𝑎
 + 4πԐ0

𝑐𝑑

𝑑−𝑐
     ....... (40) 

 

5.16 CYLINDRICAL CAPACITOR  
The cylindrical capacitor consists of a long metal cylinder A of radius a surrounded by an 

earthed metallic concentric cylindrical shell B of inner radius b. The space between the two 

cylinders is small in comparison with their lengths and is filled with a dielectric of permittivity ε.  

If the charge +Q is given to the inner cylinder, then an equal charge –Q is induced on inner 

surface of outer cylinder and a charge +Q on the out surface of the outer cylinder. As the outer 

cylinder is earthed, the charge +Q induced on the outer surface of outer cylinder flows to earth. If 

the length l of the two cylinders is large compared with separation (b-a), the charge Q can be 

considered to be distributed uniformly over the two cylinders. The charge per unit length is thus 

λ=
𝑄

𝑙
. 

The electric field strength at a point P in the space between the two cylinders at a distance r from 

the axis is entirely due to charge +Q on the inner cylinder and is directed radially away. It is 

given by 

 

E=
λ

4𝜋𝜀𝑟
�̂�      ....... (41) 

 

The potential difference between the outer and inner cylinders i.e., the potential of the inner 

cylinder is now given by  

            V=-∫ 𝐸. 𝑑𝑟
𝑎

𝑏
  = -∫

λ

4𝜋𝜀𝑟
𝑟.̂

𝑎

𝑏
dr 

 

            =
λ

4𝜋𝜀
∫

1

𝑟

𝑎

𝑏
dr 

 

            =
λ

4𝜋𝜀
log𝑒

𝑏

𝑎
 

The capacitance per unit length of cylindrical capacitor is given by so 
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                      C =
𝑐ℎ𝑎𝑟𝑔𝑒𝑝𝑒𝑟𝑢𝑛𝑖𝑡𝑙𝑒𝑛𝑔𝑡ℎ

𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙𝑑𝑖𝑓𝑓𝑟𝑒𝑛𝑐𝑒𝑏𝑒𝑡𝑤𝑒𝑒𝑛𝑡𝑤𝑜𝑐𝑦𝑙𝑖𝑛𝑑𝑒𝑟
 

 
λ

λ

4𝜋𝜀
log𝑒

𝑏

𝑎

  =  
2𝜋Ԑ

log𝑒
𝑏

𝑎

                                                                                 ......... (42) 

If K is dielectric constant of medium between the places, thenԐ =Ԑ0K 

 

   C = 
2𝜋Ԑ0K

log𝑒
𝑏

𝑎

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10 

 

The capacity of the cylindrical conductor of the length l is , therefore, given by 

                                   Cl = 
2𝜋Ԑ0Kl

log𝑒
𝑏

𝑎

                                    ........ (43) 

 

This type of cylinder is of great practical importance. For example, coaxial cables consist of 

cylindrical metal shield a coaxial central conductor and an interposed dielectric. These are 

widely used in the transmission of high frequency signals. In their use the capacitance introduced 

by them is taken into account. 

A submarine cable is also an example of cylindrical conductor. The copper cable forms the inner 

cylinder and sea water works as outer earthed cylinder. The insulating material plays the role of 

the dielectric between two cylinders. The capacitance per unit length of the submarine cable and 

co-axial cables is given by equation (42). 
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5.17 ENERGY STORED IN A CAPACITTOR  
Let us consider a capacitor of capacitance C which is given total charge Q coulombs in small 

instalments. Suppose during the process of charging, the charge at any instant on the capacitor is 

q.  At this instant the potential difference between the plates of the capacitor is v=
𝑞

𝑐
. If a further 

charge dq is given to the capacitor, the work will have to be done against this potential 

difference. This work done is  

 

                      dW = v.dq =
𝑞

𝑐
𝑑𝑞 [𝑠𝑖𝑛𝑐𝑒𝑣 =

𝑞

𝑐
] 

Therefore the total amount of work done in charging the capacitor from charge 0 to Q coulombs 

is  

 

W=∫
𝑞

𝑐

𝑄

0
𝑑𝑞   = 

1

𝑐
[
𝑞2

2
]
𝑄

0
=

𝑄2

2𝑐
  joules                    ....... (44) 

If v is potential difference between the plates of the capacitor when it has charge Q, then  

 

                Q=CV 

                 W=
(𝐶𝑉)2

2𝑐
  = 

1

2
𝐶𝑉2joules                                     ....... (45) 

This is energy stored in the capacitor .This energy resides in the dielectric. 

For a parallel plate capacitor having area of each plates A, separation between the plates d and 

the medium between the plates of permittivity Ԑ 

Capacitance C= 
Ԑ𝐴

𝑑
; and electric field strength, E=

𝑉

𝑑
 

So that                 

                              W=
1

2
.

Ԑ𝐴

𝑑
. (𝐸𝑑)2 =  

Ԑ𝐸2

2
. 𝐴𝑑    ....... (46) 

Therefore the energy stored per unit volume in the electric field of strength E 

                         W =  
Ԑ𝐸2

2
 joules/meter3 =

Ԑ0KE2

2
𝐽𝑚−3    ......(47) 

5.18  Terminal Questions 
Long type Questions: 

1. What do you understand by dielectric polarisation? Explain the electric field vector E, 

Electric polarisation vector P and Electric displacement vector D in a dielectric material 

and deduce a relation between them.  

2. Define displacement vector D and deduce relation between D and E.  

3. Deduce relation D = ε0E for dielectric material filled in parallel plate condenser.  

4. Derive an expression for the capacity of a parallel plate capacitor with space between the 

plates partly filled with of dielectric substance. 

5. Derive an expression for the energy stored by a charged capacitor. 
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Short type Questions: 

1. What is dielectric? Give some examples. 

2. Define electric polarisation vector P and displacement vector D. 

3. What is the relation between vector P and vector E? What is unit of vector P? 

4. Differentiate between vector D, E and P. 

5. Write an expression for the capacitance of a parallel plate capacitor. On what factors does 

it depend? 

 

 

Objective type Questions: 

1. Unit of Polarisation vector P is: 

(a) Coulomb    (b) Coulomb metre   (c) Coulomb/metre-2   (d) Newton/Coulomb 

2. Unit of Displacement vector Dis: 

(a)  Coulomb    (b) Coulomb- metre   (c) Coulomb/metre-2   (d) Coulomb/metre2 

3. Displacement vector D depends upon: 

(a) Charge (b) Medium     (c) Dielectric      (d) None of above 

4. Relation between Vector P and Vector E: 

(a) P =  χE ε0 E   (b) P = ε0KE   (c) P = χE E   (d) P = (χE-1)E 

5. The relation between the three electric vectors E, D and P is: 

(a) D=P+E   (b) D= P/E    (c)   D= εE+P     (d) D = ε (E+P) 

6. When a dielectric is introduced between the plates of a parallel plate air capacitor, its 

capacitance: 

(a) Decreases                  (b) increases             (c) remains unchanged 

(d) May decrease or increase depending on the nature of dielectric 

 

5.19  Answers 
                1. (c)         2. (d)          3.(c)        4. (a)       5. (c)       6. (b) 

 

5.20 SUGGESTED READINGS  
 1.  Electricity & Magnetism, D.C. Tayal, Himalaya publishing House 

 2.  Electricity, Magnetism and Electronics, S.I. Ahmad and K.C. Lal,  

Unitech House, Lucknow 

 3. Fundamental of Electricity and Magnetism,R.G. Mendiratta and B.K.Sawhney, East-West 

Press Pvt Ltd 
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UNIT 6  MAGNETIC MATERIALS, MAGNETIC 

SUSCEPTIBILITY, HYSTERESIS LOOP 

Structure 

6.1 Introduction 

6.2 Objectives 

6.3 Electric Susceptibility 

6.4 Relation Between Dielectric Constant and Dielectric Susceptibility     

6.5 Permittivity 

6.6 Microscopic view of polarization 

6.7 Kinds of polarizability 

6.7.1 Electronic polarizability 

6.7.2 Ionic polarizability 

6.7.3 Orientational polarizability 

6.8 Molecular Field or Lorentz Local Field in a Dielectric 

6.9 Clausius – Mossotti Equation 

6.10 Debye Equation or Langevin-Debye Theory of Polarisation in Polar Dielectrics 

6.11 Behaviour of Dielectric Material in an Alternating Electric Field: Complex Dielectric 

Constant 

6.12Terminal Questions 

6.13Answers  

6.14 References 

6.15 Suggested books 
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6.1 INTRODUCTION 
Mossotti and Clausius have done a systematic investigation about the dielectric properties of 

materials. They attempted to correlate the specific inductive capacity, a macroscopic 

characteristic of the insulator introduced by Faraday which is now popularly termed as dielectric 

constant with the microscopic structure of the material. Following Faraday in considering the 

dielectrics to be composed of conducting spheres in a non-conducting medium, Clausius and 

Mossotti succeeded in deriving a relation between the real part of the dielectric constant and the 

volume fraction occupied by the conducting particles in the dielectric. 

In the beginning of 20th century, Debye realized that some molecules had permanent electric 

dipole moments associated with them, and this molecular dipole moment is responsible for the 

macroscopic dielectric properties of such materials. Debye succeeded in extending the Clausius -

Mossotti theory to take into account the permanent moments of the molecules, which allowed 

him and others to calculate the molecular dipole moment from the measurement of dielectric 

constant. His theory was later extended by Onsager and Kirkwood and is in excellent agreement 

with experimental results for most of the polar liquids. Debye’s other major contribution to the 

theory of dielectrics is his application of the concept of molecular permanent dipole moment to 

explain the anomalous dispersion of the dielectric constant observed by Drude. For an alternating 

field, Debye deduced that the time lag between the average orientation of moments and the field 

becomes noticeable when the frequency of the field is within the same order of magnitude as the 

reciprocal relaxation time. This way the molecular relaxation process leads to the macroscopic 

phenomena of dielectric relaxation, i.e., the anomalous dispersion of the dielectric constant and 

the accompanying absorption of electromagnetic energy over certain range of frequencies. 

 

6.2 OBJECTIVE 
The Main objectives of the present unit are- 

 To define the electric susceptibility  

 To define the permittivity 

 To define the Polarizability and their types 

 To define about Claussius –Mossotti Equation 

 To Explain Debye Equation or Langevin-Debye Theory of Polarisation in Polar  

Dielectrics 

 Behaviour of dielectric material in an alternating electric field 

 

6.3 ELECTRIC SUSCEPTIVILITY 
When a dielectric material is placed in an electric field, it becomes electrically polarised. In most 

cases i.e. for isotopic dielectrics (whose electrical properties are identical in all directions), the 

degree of polarisation P is found to be proportional to the intensity of electric field E at a given 

point of dielectric provided the field is not very strong. 
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                        P∝ 𝑬 

P = χeE    ....... (1) 

P = ε0 χeE    ....... (2) 

 

The constant χe  is called the electric susceptibility of the dielectric material and vector E is the 

electric field within the dielectric. 

The total proportionality factor ε0 χ = χe is known as absolute susceptibility or dielectric 

susceptibility. 

The electric susceptibility of a dielectric may be defined as the ratio of the polarisation to the 

electric intensity in the dielectric. Since polarisation P equals the surface density of induced 

charge, the susceptibility may also be defined as the ratio of induced charge density to the 

electric intensity. 

 

Hence the units of susceptibility are those of surface density divided by electric intensity 

            χe= ε0 χ = 
𝑃

𝐸
 = 

𝐶𝑜𝑢𝑙𝑜𝑚𝑏/m2

𝑁𝑒𝑤𝑡𝑜𝑛/𝐶𝑜𝑢𝑙𝑜𝑚𝑏
    ....... (3) 

 

            χe = Coulomb2 / Newton-meter2 

 AlsoFarad = Coulomb2 / Newton-meter                                                        

[∵ volt =  Newton
m

coul
and Farad = Coul./Volt]     

∴        χe = 
𝐹𝑎𝑟𝑎𝑑

𝑚𝑒𝑡𝑒𝑟
     ....... (4) 

It value for vacuum is zero. The polarization of dielectrics whose molecules are permanent 

dipoles depend on temperature.   Hence such dielectrics show a dependence of susceptibility on 

temperature while non-polar dielectrics do not. 

 

6.4 RELATION BETWEEN DIELECTRIC CONSTANT AND 

DIELECTRIC   SUSCEPTIVILITY  
 

We have following two equations 

P = (K - 1) ε0E 

and     P = χ ε0E 

Hence by comparison of above two equations, we can write 

              χ = (K - 1)                                      or             K = χ + 1                         ....... (5) 

Equation (3) can also be written in another form by using relation χ = χe / ε0 

K = 1 + 
χ𝑒

ε0
   ....... (6) 

 

The value of K for all dielectrics is greater than one. Since for empty space χe is zero, the value 

of K is 1. 
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6.5 PERMITTIVITY  
We have   D = K ε0E 

The product K ε0 is called permittivity of the dielectric and is represented by ε that is  

              ε = K ε0         ....... (7) 

in empty space K = 1, so that  ε = ε0. The quantity ε0 is therefore correctly described as 

‘permittivity of empty space’. 

Also                                                K = 
ε

ε0
.......(8) 

K is also known as ‘relative permittivity’ of the dielectric. When a dielectric is placed in electric 

field, the distribution of field changes to a degree depending upon relative permittivity. 

Now, we can write 

D = K ε0E 

Or  D = εE 

Or     ε = 
𝐷

𝐸
     ....... (9) 

Hence the permittivity of a dielectric medium is the ratio of electric displacement to the electric 

intensity in the dielectric. 

 

Problem 1: The electrical susceptibility of a material is 35.4x10-12C2N-1m-2. What are the value 

of the dielectric coefficient and the permittivity of the material? 

Solution: The dielectric coefficient k of a material is related to its electric susceptibility χe by 

                            K=1+χe /ε0 

                                = 1 + 35.4x10-12/ 8.85x10-12 

                                = 1+ 4= 5 

The permittivity is  

                                         ε = K ε0 

                                         = 5 (8.85 x10-12) 

                                         = 44.3x 10-12 coul2 / newton-m2 

 

6.6 MICROSCOPIC VIEW OF POLARIZATION  
When a dielectric substance is subjected to an external electric field E0 , the electric field acting 

on an atom or molecule within the substance is not the same as the external field. It is somewhat 

different. The calculation of electric field acting on an atom or molecule is a major problem of 

dielectric theory. We call this field local or internal electric field Elocal or Ei . It is this field which 

acting on an atom or molecule induces dipole moment Pi . Obviously, the induced dipole 

moment is proportional to the local electric field. 

  pi∝Elocal 

  pi=  ⍺Elocal 
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Here ⍺ is proportionality constant and is called polarisability. It is a microscopic parameter of 

dielectric and cannot be measured directly in laboratory. If the substance contains n 

atoms/molecules per unit volume then polarisation vector P is given by 

            p = n pi = n⍺Elocal 

 Unit of ⍺:                       ⍺ = 
𝑝

𝐸
= 

𝑐𝑜𝑢𝑙.𝑚𝑒𝑡𝑒𝑟

𝑣𝑜𝑙𝑡/𝑚𝑒𝑡𝑒𝑟
= 

𝑐𝑜𝑢𝑙.

𝑣𝑜𝑙𝑡
meter2 = farad.meter2 

 

6.7 KIND OF POLARIZABILITY  
The magnitude of polarisability is measure of ease with which an atom/molecule undergoes 

distortion under the action of an electric field. There are three kinds of polarisability: 

  

(i)  Electronic 

(ii)  Ionic or atomic 

(iii) Dipolar or orientational. 

6.7.1 Electronic Polarisability (⍺e) 

In absence of any electric field on an atom the centre of negatively charged electron cloud 

coincides with the centre of positively charged nucleus. So the dipole moment of atom is zero. 

When an electric field E0is applied on a dielectric, its constituent atoms experience electric field 

Elocal. Under the action of this field, electron cloud shifts slightly in a direction opposite to the 

electric field and nucleus in opposite direction. The nucleus being much heavier than the electron 

cloud, its shift is negligibly small. The centres of negative and positive charge no longer 

coincide. This charge separation is attended with an induced dipole moment. The charge 

separation also results in a force of attraction between them which opposes the action of the 

electric field as a result of which equilibrium is soon established. Let x be the separation of 

centres of positive and negative charge. The electric field of electron cloud at the location of 

nucleus is 

E = 
ρx

3ε0
= 

𝑍e𝑥

4πε0𝑎3 = 
𝑝𝑖

4πε0𝑎3 

Here ρ = 
𝑍e

(4 3⁄ )π𝑎3 is the volume density of charge, pi = Zex is the induced dipole moment Z = 

atomic number of atom, ⍺ = radius of atom. In equilibrium, E = Elocal 

Elocal = E = 
𝑝𝑖

4πε0𝑎3
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Figure 1 (a) Centre of positive and negative charge coincide (b) The electric field creates a 

separation between of centres of positive and negative charge. 

 

The electronic polarisabilty ⍺e of the atom is given by  

⍺e = 
𝑝𝑖

𝐸𝑙𝑜𝑐𝑎𝑙
= 4π ε0⍺3   ....... (10) 

This shows that electronic polarisability is proportional to the volume of the atom. 

6.7.2 Ionic (atomic) Polarisability(⍺i) 

 This kind of polarisability occurs in ionic solids which are made up of ions (NaCl, HCl). Let a0 

be the separation of ions in absence of electric field. Under the action of electric field the positive 

ions are pulled on one side and the negative ions on the other. Thus the separation of cautions 

and anions is increased. This creates an induced dipole moment. The induced dipole moment pi is 

proportional to the local field acting on the ions. 

pi = ⍺i Elocal ....... (11) 

 

where ⍺i is ionic polarisabilty. 

 

6.7.3 Orientational Polarizability (⍺0)  

The orientational contribution to polarizabilty arises when the substance is built up of molecules 

possessing permanent dipole moment. In the absence of external electric field, the dipole 

moments are randomly oriented in all directions. When an electric field is applied, this is a 

tendency for the permanent dipoles to orient (align) themselves in the direction of the applied 

field thus producing a net dipolemoment. This mechanism is called orientational dipolar or 

polarisability. The induced dipole moment is expressed as  

p0 = ⍺0Elocal  

Where p0 is the average value of induced dipole moment per molecule and ⍺0 is a constant called 

dipolar or orientational polarisability. Generally interfacial polarisability is neglected. 

Polarisability of such type is due to large number of defects in the structure of crystal (lattice 

vacancies, impurity centres, dislocation etc.) 

Thus, dielectric polarisation is a sum of three contributions 

P = Pe+ Pi + Po 
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Correspondingly 

⍺ = ⍺e + ⍺i + ⍺0 

Or                                                  ⍺ = ⍺d + ⍺0 

Where ⍺d = ⍺e + ⍺i and called deformation polarisability. It results from the deformation of 

molecules caused by electric field. 

Non – polar molecules can have only deformation (electronic and ionic) polarisabilty while polar 

molecules can have both deformation as well as orientational polarisability. 

 

6.8 MOLECULAR FIELD OR LORENTZ LOCAL FIELD IN A 

DIELECTRIC  
The polarisabilty ⍺ as a scalar quantity and has the dimension of volume i.e., meter3. Each of the 

three types of polarisability is a function of frequency of the applied voltage. The electric field 

which is responsible for polarising a molecule of the dielectric is called the molecular field or 

polarising field. If the dielectric is a gas (whose molecules are at large distances from one 

another), the polarising field is simply the externally applied field. In case of solid or liquid 

dielectrics, however, the actual field acting on a molecule of a dielectric is different from the 

external field. It includes not only the external field but also the field produced exception of the 

molecule under consideration (because it will not be polarised by its own field). This is known as 

local or internal or microscopic electric field acting on a molecule and is responsible for the 

polarisation of this particular molecule. Lorentz (1909) was the first to evaluate this field and 

hence it is named after him. 

 
Figure 2 

 

The following method suggested by Lorentz can be used to calculate the local field at a 

molecular position. Let the dielectric sample be polarised placing it in the uniform electric field 

between two parallel plates of a capacitor (figure 2). Suppose we want to calculate the field at 

position A of the molecule assuming that this molecule is not present at all. We draw a sphere 
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around A, the size of which is big enough to contain a large number of molecules but small 

compared to the distance between the plates of the capacitor. The dielectric outside the sphere 

may be treated as a continuum of dipoles (macroscopic point of view). The molecules inside the 

sphere are, however, to be treated as individual dipoles. Now the local field at A is due to three 

sources: 

(i) The external field E0 which is determined by the free charges on the plates between which 

dielectric is placed.                  

E0 = 
𝜎

𝜀0
,  

Where σ = free charge density on plates of capacitor. 

 

(ii) E2 is the field at centre (A) of the sphere due to the bound charges on its surface. In order to 

calculate it dS be a surface element of the sphere with polar coordinates (r, θ). The 

component of the electric polarisation P normal to dS is P cos θ. The induced charge density 

the field due to polarised molecules (dipoles) of the dielectric outside the sphere. 

 

To evaluate this contribution, the dielectric sample outside the sphere may be replaced by bound 

(induced) charges on the outer faces of the dielectric and also on the surface of the sphere as 

shown in fig. 

Let E1 be the depolarising field due to the bound charges on the outer faces of the dielectric and 

E2 be the field due to the bound charges on the surface of the sphere. Then 
'

1

0

E



  , where σ’is 

the bound charge density. The negative sign signifies that E1 opposes E0. E2 shall be evaluated 

shortly. 

(iii) The field (E3) due to the polarised molecules within the sphere. This field is zero for many 

practical cases of gases, liquids and cubic crystals. We shall therefore ignore it here. 

Hence the total electric field at A may be written as 

Elocal = E0 + E1 + E2 

Elocal = 
𝜎

𝜀0
 - 

𝜎′

𝜀0
+ E2 

We know that the net macroscopic electric field within the dielectric is given by 

E = 
𝜎

𝜀0
 - 

𝜎′

𝜀0
     ....... (12)                              

Therefore,  Elocal = E + E2    ....... (13) 

 

Over dS is therefore P cos θ. The charge on dS is P cos θ dS where θ is the angle between 

direction of P (or E) is and the radius of the sphere. 

The field at A due to the charge on dS is 1/4πε0(P cos θ dS/ r2), where r is the radius of sphere. 

The field is directed from A to dS. The component of this field in the direction of E is                     

(  
1

4πε0 

𝑃 cos θ𝑑𝑆

𝑟2 )cosθ =  
𝑃𝑐𝑜𝑠2θ𝑑𝑆

4πε0 𝑟2  

 



PHY (N)-102                                                                                                          ELECTRICITY AND MAGNETISM  
& PHY (N)-102L                                                                                                              & LABORATORY COURSE II   

121 
 

 
Figure 3 

 

Now, suppose that dS is a ring shaped element (shown shaded) of radius rsinθ and width rdθ on 

the surface of the sphere. The area of the element is  

dS = 2π(r sinθ) rdθ = 2πr2 sinθdθ. 

The component of the field at A perpendicular to E due to this ring is zero, since such 

components are symmetrically distributed around the axis. The component of the field along the 

direction of E is 

 

𝑃𝑐𝑜𝑠2θ𝑑𝑆

4πε0 𝑟2
= 

𝑃𝑐𝑜𝑠2θ𝑟2(2π sinθ𝑑θ) 

4πε0 𝑟2
 

= 
𝑃

2ε0 
𝑐𝑜𝑠2θ  sinθ𝑑θ 

The field E2 at A due to the entire induced charge on the surface of the sphere is  

E2 = ∫
𝑃

2ε0 

𝜋

0
𝑐𝑜𝑠2θ  sinθ𝑑θ 

                                                            = 
𝑃

2ε0 
∫ 𝑐𝑜𝑠2θ  sinθ𝑑θ

𝜋

0
 

                                                            = 
𝑃

2ε0 
 [-

𝑐𝑜𝑠3θ

3
]0

π = 
𝑃

3ε0 
 

In vector notation    E2 = 
𝐏

2ε0 
 ....... (14) 

 

 Substituting E2 in equation (13) 

Elocal= E + 
𝐏

3ε0 
  ....... (15) 

This is the actual field at the position of a molecule within the dielectric and is called ‘Lorentz 

field equation.’ 
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6.9 CLAUSIUS-MOSSOTTI EQUATION  
Clausius and Mossotti tried to correlate the macroscopic properties of a dielectric with its 

microscopic character. They established a relation between the dielectric constant (a macroscopic 

parameter) and the molecular polarisability (microscopic parameter) of a non-polar dielectric. 

This relation is known as ‘Clausius-Mossotti Equation.’ 

The polarisabilty (⍺) of a molecule is the dipole moment (p) induced in the molecule per unit 

polarising (local) field. That is  

p = ⍺Elocal 

 if there are n molecules per unit volume of the dielectric, then the polarisation P is given by  

P = np = n⍺Elocal.  

We know that Elocal = E + 
P

3ε0 
  , where E is the macroscopic field within the dielectric. 

∴P  = n⍺ (E + 
𝑃

3ε0 
)    

Now, the polarisation P is related to the dielectric constant K by the equation P = (K - 1) ε0E. 

Then we have 

            (K - 1)ε0E = n⍺ [E + 
(𝐾− 1)ε0 𝐸

3ε0 
]    

or         (K - 1)ε0 = n⍺ [1+ 
(𝐾− 1) 

3
]   = n⍺ (

𝐾+2

3
) 

 

or         ⍺ = 
 3ε0 (𝐾− 1) 

n(𝐾+2)
   ....... (16) 

 

This is known as the ‘Clausius – Mossotti Equation. If n is known, ⍺ can be calculated by 

measuring Kexperimentally. 

Equation (16) reduces in another simple form by using the relation K =
ε

ε0 
 . 

That is  
ε−ε0 

ε+ 2ε0 

=
n⍺

 3ε0 
 

The magnitude of 
ε−ε0 

ε+ 2ε0 

 or 
 (𝐾− 1) 

(𝐾+2)
  is known as specific polarisation of a dielectric. 

The Clausius-Mossotti Equation can also be written in terms of the dielectric suscepetibilty χe by 

putting K = 1 + 
𝜒𝑒

ε0 
 . That is  

⍺ = 
 3ε0 

n

𝜒𝑒

𝜒𝑒+ 3ε0 
  .....(17) 

The Clausius – Mossotti Equation has been verified experimentally for a number of gases 

(hydrogen etc.). Since ⍺ is constant for a particular gas, 
 1

n

 (𝐾− 1) 

(𝐾+2)
   must be a constant. The value 

of n was varied by changing the pressure of hydrogen gas and the dielectric constant K was 

measured for various pressures. It was found that 
 (𝐾− 1) 

n(𝐾+2)
  was independent of pressure, thus 

verifying the equation. 
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Limitation of the Clausius-Mossotti Equation 

In deriving above equation the field (E3) due to polarised molecule within the sphere is supposed 

to be zero because of the following assumption: 

(1) Since polarisation is considered as proportional to the field, it means the polarisation of   

the molecules is by elastic displacement only. 

(2) Absence of short range interaction. 

(3) Isotropy of the polarisability of the molecules. 

 All these condition are satisfied with neutral molecules having no constant dipoles i.e., non-

polar molecules. Thus the equation is valid for non-polar liquids and gases only. It does not hold 

for crystalline solids and polar molecules. 

 

Atomic Radius:  It can be shown that ⍺ is proportional to the cube of the radius of the molecule. 

Hence if K is found and n is known for a gas at a given temperature and pressure, the radius of 

the atom may be found for monoatomic gases. 

 

6.10 DEBYE EQUATION OR LANGEVIN-DEBYE THEORY OF 

POLARIZATION IN POLAR DIELECTRIC  
When a polar dielectric is placed in the electric field, two things happen. First, it displaces the 

centre of gravity of protons and electrons so that an extra dipole moment is induced giving the 

electronic polarisability. For the moment, we shall ignore this induced dipole contribution, but its 

effect will be added later. Second, the individual molecules experience torque which tends to 

align them with the field. But the alignment is not complete because of the thermal motion of the 

molecules which favour random orientations. The average alignment produced gives rise to a net 

dipole moment per unit volume. If the temperature of the specimen is raised, the polarisation 

becomes even smaller due to the increase in thermal agitation of the molecules. Thus, for polar 

dielectrics, the orientation polarisability and hence the dielectric constant and the electric 

suscepetibility do depend on temperature.  

Let us now calculate the net dipole moment per unit volume created by alignment of the 

molecules at a temperature T. Let n be the number of molecules per unit volume of the specimen 

and θ be the angle which the permanent dipole moment p0of a molecule makes with the 

polarising field E (Here E means Elocal, the effective electric field for simplicity we avoid the 

subscript ‘local’).      
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Figure 4 

 

The potential energy of this molecule in the field is  

𝑈 = −𝑝0.𝐄 =  𝑝0𝐸𝑐𝑜𝑠𝜃   .....(18) 

The average effective dipole moment per unit volume may be calculated from statistical 

probability law (Maxwell Boltzmann law) which states that at absolute temperature ToK, the 

probability of finding a particular molecular energy U is proportional to e-U/kT, where k is 

Boltzmann’s constant. 

Then the number of molecules (dipoles) per unit volume, dn, having energy and oriented at 

angles between θ and θ + dθ with respect to the direction of E is given by  

 𝑑𝑛 = 𝐶𝑒−𝑈/𝑘𝑇𝑑𝜔   .....(19a) 

Where C is a constant and dω is the solid angle contained between θ and θ + dθ (figure 4). This 

angle is given by  

dω = 
𝑟𝑖𝑛𝑔𝑎𝑟𝑒𝑎𝑏𝑒𝑡𝑤𝑒𝑒𝑛θ and θ + 𝑑θ

𝑟2  

                                  = 
2𝜋 (𝑟 sin𝜃)(𝑟𝑑θ)

𝑟2  

     dω = 2𝜋sin𝜃𝑑𝜃 

Substituting this value of dω in equation we get 

                     dn = C(p0E cosϴ)/kT 2π sinθ𝑑𝜃 

Let us write 
𝑝0𝐸

𝑘𝑇
 =a and 2π’c = C (a new constant). Then 

𝑑𝑛 = 𝐶𝑒𝑎cosθ. sin θ. 𝑑𝜃 

The total number of molecules per unit volume is 

𝑛 =  ∫𝑑𝑛 =  𝐶′ ∫ 𝑒𝑎cosθ. sin θ. 𝑑𝜃
𝜋

0

 

 

Now each of the dn molecules has a component of dipole moment po cosθ along the direction of 

the field. The dipole moment of dn molecules along the field direction is thus  p0 cosθ dn. (By 

symmetry, the sum of the components at right angles of the field is zero). 

Average dipole moment in the direction of applied electric field is given by 
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𝑝 =  
total dipole moment in the direction of field

total number of dipoles
 

 =  
∫ 𝑝0cosθ𝑑𝑛
𝜋
0

∫ 𝑑𝑛
𝜋
0

 = 
𝑝0 ∫ 𝑒𝑎cosθcosθ sinθ𝑑θ

𝜋
0

∫ 𝑒𝑎cosθ sinθ𝑑θ
𝜋
0

 

Putting cosθ = x,  – sin θdθ = dx we have 

 

𝑝 =  
𝑝0 ∫ 𝑥𝑒𝑎𝑥𝑑𝑥

1
−1

∫ 𝑒𝑎𝑥𝑑𝑥
1
−1

       = p0
𝑑

𝑑𝑎
 [ln ∫ 𝑒𝑎𝑥𝑑𝑥

1

−1
] 

 = p0 
𝑑

𝑑𝑎
 [ln (𝑒𝑎 − 𝑒−𝑎) – ln a] 

 = p0[
𝑒𝑎+ 𝑒−𝑎

𝑒𝑎−𝑒−𝑎 −
1

𝑎
] 

            = p0(coth a −
1

𝑎
)   .....(19b) 

= p0L(a)                                                                       .....(20) 

Where L(a)=coth a - 
1

𝑎
 is called Langevin function. The polarisation P of the dielectric is 

P = n𝑝 = npoL(a) = npo[coth a −
1

𝑎
]   .....(21)                                                                                                                    

A plot of Langevin function L (a) against a is shown in the figure (5). For large value of     a =  
𝑝0𝐸

𝑘𝑇
i.e., at large field strengths or low temperature 

L(a) = (coth a −
1

𝑎
) → 1.....(22) 

 So P→np0  = saturation value of polarisation. 

 

 

 
It means the maximum value of the dipole moment per unit volume can be produced in the 

dielectric when all the molecular dipoles are perfectly aligned in the field direction. Thus large 

fields and low temperature causes P to approach its saturation value. This is clear from the latter 

part of the curve. In practice, however, the dielectric would break down (i.e. would become 

conducting) at such large fields. 

At ordinary temperature, for fields even upto the dielectric strength a is small and the curve is 

linear. The dipole moment po of most polar materials is such that a<<1 (≈10-3) for a full range of 

field strengths. 
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Since it is the linear region, which is important, it is appropriate to expand L(a) in a power series 

of a and keep only the important terms. 

L(a) = (coth a −
1

𝑎
) =  

𝑎

3
 - 

𝑎3

45
 

 Practically a is very small, hence, 

L(a) =  
𝑎

3
 

Now equation (19) reduces to  

P = np0
𝑎

3
  = 

𝑛𝑝0 
2 𝐸

3𝑘𝑇
.....(23) 

It follows from this equation that the polarisation P is linear function of polarising field E, as 

shown by the initial (Straight line) part of the curve. Thus a dielectric material containing polar 

molecules is, in general, linear. 

From equation (21), the electric susceptibility χe of the dielectric material is given by  

            χe = 
𝑷

𝑬
 =

𝑛𝑝0 
2

 3𝑘𝑇
 

Thus the electric susceptibility and hence also the dielectric constant of a polar dielectric is 

inversely proportional to the absolute temperature. It is this feature which distinguishes a polar 

dielectric from a non-polar dielectric for which both the susceptibility and the dielectric constant 

are independent of temperature. 

Now, the polarisability is defined as the dipole moment of a molecule per unit polarising field. 

Therefore, the polarisability ⍺0 due to the alignment of the molecular dipoles of the polar 

dielectric is given by, from equation (21). 

⍺0 = 
𝑃

𝑛𝐸
= 

𝑛𝑝0 
2

 3𝑘𝑇
 

This result has been derived by neglecting induced dipole moments and represents the 

orientational polarisability. In fact, the induced dipole moments (which are responsible for the 

polarisation of non-polar dielectrics) are also present in polar dielectrics. They give rise to 

‘deformation polarisability, ⍺d’. Thus the total polarisability of a molecule of polar dielectric is 

⍺ = ⍺d + ⍺0 

Or   ⍺ = ⍺d + 
𝑝0 

2

 3𝑘𝑇
   .....(24) 

This equation is known as Langevin Debye equation and it has been of great importance in 

interpreting molecular structures. 

The magnitude of ⍺d for both polar and non-polar dielectrics is of the same order. At ordinary 

temperatures, ⍺0 is much larger that ⍺d. This is because the permanent dipole moments, where 

they exits, are enormously larger than any induced moment. This is why the dielectric constant 

for a polar dielectric is higher than that for a non-polar dielectric. For example, the dielectric 

constant of water is about 80, while a typical non-polar liquid might have a dielectric constant 

around 2. 

The above theory is valid for liquids and gases. In a solid dielectric the molecules are very 

density packed and so their mutual interactions cannot be ignored. 
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6.11 BEHAVIOUR OF DIELECTRIC MATERIAL IN AN 

ALTERNATING ELECTRIC FIELD: COMPLEX DIELECTRIC 

CONSTANT  
When a dielectric material is kept in an alternating field, the macroscopic electrical field E as 

well as the polarisation vector P and displacement vector D become time dependent. In general, 

the polarisation vector P lags in phase over the electrical field E and thereby D too. This 

phenomenon can be represented geometrically by representing them in Argand plane as below. 

Let the complex electric field be represented as 

�̃� =  𝐸0𝑒
𝑗𝜔𝑡    .....(25) 

With peak value E0 and frequency ω, then the polarisation vector P is represented as 

�̃� =  𝑃0𝑒
𝑗(𝜔𝑡−θ)....(26) 

Where θ is the phase angle. 

The displacement vector (complex) is defined as  

�̃� =  ε0�̃� +  �̃� 

                                                 = D0e
j(ωt - φ)  .....(27) 

   Now, the complex permittivity of the dielectrics defined as 

휀 ̃ =  
�̃�

�̃�
 =  

𝐷0

𝐸0
e−ωϕ 

Or      ε0�̃� =  
𝐷0

𝐸0
e−jϕ   .....(28) 

Where �̃� is the complex dielectric constant. �̃� may be represented as Kr – jKi , where Kr and Ki 

are the real and imaginary parts of 𝐾.̃  

Thus, with the help of equation (26), we have 

Kr – jKi =  
𝐷0

ε0𝐸0
e−𝑗ϕ....(29) 

 

 

 
Figure 6 

 

   Now, equating real and imaginary parts, we have 

Kr = 
𝐷0

ε0𝐸0
cosϕ 
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and                              Ki = 
𝐷0

ε0𝐸0
 sinϕ.....(30) 

It can be shown that imaginary part of dielectric constant is related to the power loss in the 

dielectric, which is delivered by the source. The heating effect of water in an alternating electric 

field is an example of this.                                                        

 

6.12 TERMINAL QUESTIONS  
Long Type Question 

1. Define polar and non-polar molecules. Deduce Clausius –Mossotti relation for non-polar 

dielectrics.  

2. What is dielectric polarisation ? Give the Langevin’s theory of polarization in polar 

dielectrics. 

3. Explain Langevin-Debye theory of polarisation in polar dielectrics. Show that for polar 

dielectrics the susceptibility is inversely proportional to the absolute temperature. 

4. Differentiate between electronic, ionic and orientational polarisability. 

5.  

Short Type Questions 

1. Deduce relation between dielectric  constant and electrical susceptibility of dielectric. 

2. State Clausius-Mossotti relation. 

3. What is the Electronic polarisability ? 

4. What is the atomic polarisability ? 

5. What is the orientational polarisability ? 

6. Write Langevin-Debye equation of polar dielectrics. 

7. Write the Limtation of Clausius-Mossotti equation. 

 

Objective type questions 

1. Langenin’s Functions L(x) is :   

(a) Coth x + 1/x 

(b) Coth x-1/x 

(c) X coth x 

(d) Coth x-x 

2. Electric susceptibility of a polar dielectric at absolute temperature T is : 

(a) Directly proportional to T 

(b) Inversely proportional to T 

(c) Directly proportional to T3 

(d) Inversely proportional to T3 

3. Claussius- Mossotti equation does not hold for : 

(a) gases 

(b) liquid 

(c) crystalline solids 
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(d) none of these 

4. The relation between dielectric constant K and dimensionless electric susceptibility χe is : 

(a) K=1+ ε0 χe 

(b) K=1-  χe 

(c) K=1+  χe 

(d) K= ε0 χe 

 

6.13 ANSWERS 
Objective type questions:  

               1. (b)           2.(b)          3. (c)           4.(c)    
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7.1 INTRODUCTION 

The magnetic effects can be produced by a magnet or by a current carrying conductor. The 

region around a magnet or current carrying conductor, in which a magnetic needle experiences a 

torque and rests in a definite direction, is called ‘magnetic field’. A charge moving in a magnetic 

field experiences a deflecting force. Of course, if a charge moving through a point experiences a 

deflecting force, then a magnetic field is said to exist at that point. This field is represented by a 

vector quantity B⃗⃗  , called magnetic field or magnetic induction.  The magnetic induction can be 

defined in terms of lines of induction as the number of lines of induction passing through a unit 

area placed normal to the lines measures the magnitude of magnetic induction or magnetic flux 

density B⃗⃗ . Obviously, in a region smaller is the relative spacing of the lines of induction, the 

greater is the magnetic induction. The tangent to the line of induction at any point gives the 

direction of magnetic induction B⃗⃗  at that point. The lines of induction simply represent 

graphically how B⃗⃗  varies throughout a certain region of space. In the present unit, you will study 

the force on a moving charge in simultaneous electric and magnetic fields, Biot-Savart law, 

magnetic force between current elements, Ampere’s circuital law and its applications. 

7.2 OBJECTIVES 

After studying this unit, you should be able to- 

 understand Lorentz force 

 apply Biot-Savart law 

 apply Ampere’s circuital law 

 solve problems using Biot-Savart law and Ampere’s circuital law 

7.3 LORENTZ FORCE 

Let us consider a charged particle of charge q which is moving with velocity v⃗  in a magnetic 

field B⃗⃗ , then the magnetic force acting on that charged particle is given by - 

F⃗ = q(v⃗ × B⃗⃗ )                                                                                           …..(1) 

The direction of F⃗  will be perpendicular to both the direction of velocity v⃗  and the direction of 

magnetic field B⃗⃗ . Its exact direction is given by the law of vector product of two vectors. 

The magnitude of magnetic force is given as- 

F = qvB sinθ                                                                                            …..(2) 

where θ is the angle between velocityv⃗  and magnetic field B⃗⃗ . 
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v⃗  

θ 

                                  +q                            B⃗⃗  

                                                 Figure 1 

If the angle between velocity v⃗  and magnetic field B⃗⃗  is 900 then- 

Fmax = qvB sin 900 = qvB  

i.e. if velocity v⃗  and magnetic field B⃗⃗  are at right angle then the magnetic force acting on the 

charged particle is maximum that is equal to qvB. 

If θ = 00 or 1800 i.e. velocity v⃗  and magnetic field B⃗⃗  are parallel to each other then- 

F = qvB sin 00 = 0 

i.e. if the charged particle is moving parallel to the magnetic field, it does not experience any 

force. 

If v = 0, then F = 0. This means that if the charged particle is at rest in the magnetic field, then it 

does not experience any force. 

If a charged particle is moving in space where both an electric field E⃗⃗  and a magnetic field B⃗⃗  are 

present, then the total force acting on the charged particle is called the Lorentz force. 

The electric force acting on charged particle, eF qE                                                  .....(3) 

The magnetic force acting on the charged particle, ( )mF q v B   

 

The total force acting on the charged particle, e mF F F   

                                                                             = q E⃗⃗  + q(v⃗ × B⃗⃗ ) 

orF⃗  = q[E⃗⃗  + (v⃗ × B⃗⃗ )]              .....(4) 

The force given by equation (4) is called the Lorentz force and the equation is known as Lorentz 

force equation. 

If a charged particle enters perpendicular to both the electric and magnetic fields, then it may 

cancel each other and therefore, the charged particle will pass undeflected. In this situation, 
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F⃗  = q[E⃗⃗  + (v⃗ × B⃗⃗ )] = 0 

or                                               E⃗⃗  = - (v⃗ × B⃗⃗ )                                                                 .....(5) 

In magnitude, E = v ×B     or   v = 
E

B
                                                                    .....(6) 

Thus a charged particle entering in simultaneous electric and magnetic field may pass 

undeflected. Such an arrangement of simultaneous electric and magnetic fields is called velocity-

selector. Because the charged particle of only specified velocity given by v = E/B can pass 

undeflected. The particle of velocity v < E/B will be deflected towards electric force and those 

with velocity v > E/B will be deflected towards magnetic force. 

7.4 BIOT-SAVART LAW 
Oersted’s experiment showed that a current-carrying conductor produces a magnetic field around 

it. French scientists Biot and Savart, in the same year 1820, performed a series of experiments to 

study the magnetic fields produced by various current-carrying conductors and formulated a law 

to determine the magnitude and direction of the magnetic fields so produced. This law is known 

as ‘Biot-Savart law’. 

Let us consider a conductor of an arbitrary shape carrying electric current i and P a point in 

vacuum at which the magnetic field is to be determined. Let us divide the conductor into 

infinitesimal current-elements. Let us consider a small current element XY of length dl.  

 

 

According to Biot-Savart law, the magnetic field dB produced due to this current element at 

point P at a distance r from the element is- 

(i) directly proportional to the current flowing in the element i.e. dB ∝ i 
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(ii) directly proportional to the length of element i.e. dB ∝ dl  

(iii) directly proportional to sin of angle between current element and the line joining 

current element to point P i.e. dB ∝ sin θ 

(iv) inversely proportional to the square of the distance of the element from point P i.e. dB 

∝
1

r2
 

Combining these, we get- 

dB ∝
idlsinθ

r2
 

or dB =
μ

4π

idlsinθ

r2
.....(7) 

where, 
μ

4π
 is a dimensional constant of proportionality whose value depends upon the units used 

for the various quantities. It depends on the medium between the current element and point of 

observation (P). Here, μ is called the permeability of medium. Equation (7) is called Biot-Savart 

law. The product of current i and the length of element dl i.e. idl is called the current element. 

Current element is a vector quantity; its direction is along the direction of current.  

If you place the conductor in vacuum or air, then μ is replaced by μ0and thus Biot-Savart law can 

be written as- 

                                             dB = 
μ0

4π

idlsinθ

r2
.....(8) 

μ0 is called the permeability of free space or air.Its value in the SI system is assigned as- 

μ0 = 4π × 10-7 weber/ampere-meter (WbA-1m-1) 

Thus,
μ0

4π
= 10-7 WbA-1m-1 

μ0 or 
μ0

4π
 may also be expressed in Newton/Ampere2 (N/A2).  

The direction of magnetic field is perpendicular to the plane containing current element and the 

line joining point of observation to current element. Therefore, in vector form, Biot-Savart law 

can be expressed as- 

𝑑�⃗�  = 
μ0

4π

id l ×r⃗ 

r3
 .....(9) 

The resultant magnetic field at P due to the whole conductor can be found by integrating 

equation (9) over the entire length of the conductor. Thus 

B⃗⃗  = ∫𝑑B⃗⃗  
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Direction of magnetic field dB: The direction of magnetic field 𝑑�⃗�  is perpendicular to both the 

current element idl  and the position vector r  of point P relative to current element and may be 

found by the law of vector cross product or by Maxwell’s right hand screw rule. Thus in figure 2  

the direction of magnetic field at point P is shown by × (cross) i.e. vertically inward (downward 

perpendicular to the plane of the paper) and at point P’, the direction of magnetic field is shown 

by •(dot) i.e. vertically outward(upward perpendicular to the plane of the paper). 

7.4.1 Maxwell’s Right Hand Screw Rule: 

If we hold the screw driver in our right hand and rotate a screw in such a way that the point of 

screw moves along the direction of electric current in the conductor, then the direction of rotation  

of the thumb will be the direction of magnetic lines of force. 

 

 

 

                                                                  i 

 Magnetic lines of force 

 

Current carrying conductor 

 

 

 

                                                              Figure 3 

7.4.2 Comparison of Coulomb’s Law and Biot-Savart Law 

A current generates a magnetic field in the surrounding space while a stationary charge generates 

an electric field.  Coulomb’s law gives the electric field due to a distribution of charges while 

Biot-Savart law gives the magnetic field due to a current element. According to Coulomb’s law, 

the magnitude of electric field at a point distant r due to a charge element dq is given as- 

                                                                  dE = 
1

4𝜋𝜀0

𝑑𝑞

𝑟2 
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According to Biot-Savart law, the magnitude of magnetic field at a point distant r due to a 

current element i dl is given as- 

                                                                 dB = 
μ0

4π

idlsinθ

r2
 

where θ is the angle between the length of the element and the line joining the element to the 

point. 

We, thus, see that Biot-Savart law is the magnetic equivalent of Coulomb’s law and both are 

inverse square laws. However, these two laws differ in certain respect. The charge element dq is 

a scalar while the current element i dl is a vector ( idl ) whose direction is in the direction of the 

current. According to Coulomb’s law, the magnitude of electric field depends only upon the 

distance of the charge element from the point. According to Biot-Savart law, the magnitude of 

magnetic field at the point also depends upon the angle between the current element and the line 

joining the current element to the point. Secondly, according to Coulomb’s law, the direction of 

electric field is along the line joining the charge element and the point. According to Biot-Savart 

law, the direction of magnetic field is perpendicular to the current element as well as to the line 

joining the current element to the point. 

Example 1:  An electron moving with velocity 5×107 m/sec enters a magnetic field of 1 Wb/m2 

at an angle of 900 to the magnetic field. Estimate the magnetic force acting on the electron. 

Solution: Here v = 5×107 m/sec, B = 1 Wb/m2, θ = 900 , q = e = 1.6×10-19 C 

Using  F = qvB sinθ 

F = 1.6×10-19×5×107×1×sin900 

= 8×10-12 Newton 

Example 2:A proton is moving northwards with a velocity of 3×107 m/sec in a uniform magnetic 

field of 10 Tesla directed eastward. Find the magnitude and direction of the magnetic force on 

the proton. Charge on proton= 1.6×10-19 C 

Solution: Given v = 3×107 m/sec, B= 10Tesla, q = 1.6×10-19 C 

The magnetic force on proton F = qvB sinθ 

 = 1.6×10-19×3×107×10×sin 900 = 1.6×10-19×3×107×10×1 = 4.8×10-11 Newton 

The magnetic field is directed eastward and the direction of motion of proton is northward i.e. 

the direction of flow of current is northward. By Fleming’s left-hand rule, the force on the proton 

will be directed vertically downwards. 
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Self Assessment Question (SAQ) 1:An electron is moving vertically upward with a speed of 

2×108 m/sec. Find out the magnitude and direction of the force on the electron exerted by a 

horizontal magnetic field of 0.50 Wb/m2 directed towards west? Also calculate the acceleration 

of the electron. 

Self Assessment Question (SAQ) 2:An electron moving with velocity v⃗  along +x-axis enters a 

uniform magnetic field B⃗⃗  directed along + y-axis. What is the magnitude and direction of the 

force on the electron? 

Self Assessment Question (SAQ) 3:A 2 MeV proton is moving perpendicular to a uniform 

magnetic field of 2.5 Tesla. Find the force on the proton. The mass of proton = 1.65×10-27 Kg. 

Self Assessment Question (SAQ) 4: Choose the correct option- 

The force on a charged particle moving in a magnetic field is maximum when the angle between 

direction of motion and field is- 

(i) 450(ii) 1800(iii) zero                        (iv) 900 

Self Assessment Question (SAQ) 5: Choose the correct option- 

A moving electric charge produces- 

(i) electric field only (ii) magnetic field only     (iii) both electric and magnetic fields    (iv) 

neither of these two fields 

7.5 MAGNETIC FORCE BETWEEN TWO PARALLEL 

CURRENT CARRYING CONDUCTORS 

Let us consider two long, straight and parallel current carrying conductors PQ and RS separated 

by a distance r. Let i1 and i2 be the currents flowing in two conductors in the same direction 

respectively. Now, let us find expression for the force acting between the conductors. 

The magnitude of the magnetic field at a point P on conductor RS is – 

                                                                   B = 
μ0

4π

2i1

r
 

By Maxwell’s right hand screw rule, the direction of this field is perpendicular to the plane of the 

page directed downward. 
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                                                              Figure 4 

 

Obviously, the conductor RS is situated in magnetic field B perpendicular to its length. It, 

therefore, experiences a magnetic force. Using formula, F = iBl sinθ, the magnitude of magnetic 

force acting on a length l of conductor RS is given as- 

F = i2 B l sinθ = i2
μ0

4π

2i1

r
l sin 900 

Or                                                        F = 
μ0

4π

2i1i2l

r
                                                        .....(10) 

The force per unit length of conductor RS is given by- 

                                                            F/l = 
μ0

4π

2i1i2

r
                                                      .....(11) 

By Fleming’s left hand rule, the direction of this force is towards conductor PQ if i2 is flowing in 

the same direction as i1(Figure 4). Similarly, the force per unit length of conductor PQ due to 

current i2 in conductor RS will be same i.e. F/l = 
μ0

4π

2i1i2

r
 and is directed towards conductor RS. 

Thus, if the currents are in the same direction, then the nature of the force is attractive. The two 
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conductors will have a tendency to move towards each other. If the two ends of the conductors 

are fixed, then the shape of two conductors will be concave. 

If the direction of currents in two conductors is opposite, the force on two conductors will be 

outwards i.e. repulsive in nature (Figure 5) and now the conductors will repel to each other. If the 

ends of two conductors are fixed, then the shape of these conductors will be convex.  

                                               P                                              R 

 

 

 

                                          i1 i2 

 

 

 

                                             Q S 

 

 r 

                                                               Figure 5 

 

7.5.1 Definition of Ampere:  

The force of attraction or repulsion between two long, parallel and straight conductors in vacuum 

has been used to define ampere. 

                                                              F/l = 
μ0

4π

2i1i2

r
 

Let i1= i2 = 1 Amp. and r = 1 meter,  then  

                                                                F/l = 
μ0

4π

2i2

r
 = 1 ×10-7× 

2×(1)2

1
 

= 2 × 10-7 N/meter  
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Thus, 1 ampere is the current which when flowing in each of two infinitely long parallel 

conductors 1 meter apart in vacuum produces between them a force of exactly 2 × 10-7 N/meter 

of length. 

Example 3: Estimate the force per unit length on a long straight wire carrying a current of 4 

Amp due to a parallel wire carrying a current of 6 amp. If the direction of currents in two wires is 

same, then find the nature of force acting between them. The distance between the wires is 3 cm. 

Solution: Given i1 = 4 amp, i2 = 6 amp, r = 3 cm = 3 × 10-2 m 

Using formula F/l = 
μ0

4π

2i1i2

r
, we get- 

Force per unit length F/l =  1× 10-7×
2×4×6

3×10−2
 

= 1.6×10-4 N/m-1 

Since the direction of currents in two wires is same, therefore the force acting between them is 

attractive in nature. 

Example 4:Two parallel wires, 1 m apart, carry currents of 1 amp and 3 amp in opposite 

directions. Calculate the magnitude and nature of force acting between them on a length of 2 m. 

Solution: Given r = 1 m,  i1 = 1 amp, i2 = 3 amp, l = 2 m 

Using F = 
μ0

4π

2i1i2l

r
, we get- 

F = 1× 10-7×
2×1×3

1
×2  

= 12×10-7 N/m  (repulsive i.e. away from each other) 

Self Assessment Question (SAQ) 6:The parallel wires each of length 200 cm and carrying a 

current of 0.4 amp in the same direction, are kept 40 cm apart in air. Find the force per unit 

length on each wire. 

Self Assessment Question (SAQ) 7:“Two parallel wires carrying current in the same direction 

repel each other”. Is this statement true or false? Give reason. 

7.6 AMPERE’S CIRCUITAL LAW 

According to Ampere’s circuital law, “The line integral of magnetic induction around a closed 

path is equal to μ0 times the net current enclosed by the path” i.e. 

∮ B⃗⃗ . dl⃗⃗  ⃗ = μ0 i                                                      .....(12) 

where i is the current enclosed by the path. 
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Let us suppose that the magnetic field induction B arises due to a long wire carrying a current of 

i ampere. Now let us consider a circular path of radius r centred on this current carrying wire. 

 

                                                               i 

 

 

                                                                    δθ                                       B         

    Oδl 

 

 r 

 P 

 

 

                                                                      Figure 6 

 

The magnitude of magnetic induction at any point P on the circular path is given by- 

                                                              B = 
μ0

4π

2i

r
                                                              .....(13) 

For all points on the circular path, the magnetic induction B⃗⃗  has the same magnitude given by 

equation (13) and it is parallel to the tangent to the circular path. Therefore, the line integral of 

the magnetic induction B around the circular pathcentred on the current carrying wire is given 

by- 

∮ B⃗⃗  dl = ∮ B⃗⃗ dl = ∮
μ0

4π

2i

r
rdθ 

                                                                = 
μ0

4π
2i ∮ δθ 

= 
μ0

4π
2i (2π) = μ0 i 

Thus we have-                                         ∮ B⃗⃗ . dl⃗⃗  ⃗ = μ0 i 
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The sign of integral depends upon the direction in which the current is enriched. The sign is 

positive if the path followed for line integral is parallel to B and negative if the path followed is 

anti-parallel. 

If the path enclosing the current is not circular but is irregular of any shape, then we divide the 

path into large number of small elements. Ampere’s law holds for closed path of any shape.  

7.6.1 Differential form of Ampere’s Law 

Ampere’s circuital law can be expressed in terms of magnetic field intensity (H⃗⃗ ). We know that- 

B⃗⃗  = μ0H⃗⃗  

Therefore from equation (12) we have- 

∮μ0H⃗⃗ . dl⃗⃗  ⃗ = μ0 i       

Or                                                     ∮ H⃗⃗ . dl⃗⃗  ⃗ =  i                                                         .....(14) 

But current     i = ∬J . dS⃗⃗⃗⃗  .....(15) 

Where J  is the current density and dS⃗⃗⃗⃗  is small element of area at the point of current density J  

inside the closed path. 

Therefore, equation takes the form as- 

∮ H⃗⃗ . dl⃗⃗  ⃗ = ∬J . dS⃗⃗⃗⃗   .....(16) 

Using Stoke’s theorem, we have- 

∮ H⃗⃗ . dl⃗⃗  ⃗ = ∬curl H.⃗⃗  ⃗ dS⃗⃗⃗⃗  

Therefore, equation (16) becomes- 

∬curl H.⃗⃗  ⃗ dS⃗⃗⃗⃗  =∬J . dS⃗⃗⃗⃗  

i.e.                                                   ∬(curlH⃗⃗  - J ).dS⃗⃗⃗⃗  = 0                                             .....(17) 

As the surface is arbitrary, therefore integrand must vanish i.e. 

                                                    curl H⃗⃗  - J  = 0 

or                                                 curl H⃗⃗ =J                                                                    .....(18) 

Multiplying both sides by μ0 in equation (18), we get- 
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μ0curl H⃗⃗ =μ0J  

or                                              curl μ0H⃗⃗  = μ0J  

or                                              curl B⃗⃗  = μ0J                                                                    .....(19) 

Equation (18) or (19) is the differential form of Ampere’s circuital law. The above relation (19) 

indicates that the magnetic induction at a point is derived from the given value of J  at that point 

by integration. However this equation is not enough to derive B⃗⃗  at a point because for the same 

value of J  at the point another term may be added to B⃗⃗ . We, therefore, need another condition. 

7.6.2 Applications of Ampere’s Law 

Magnetic Field due to Long Straight Current Carrying Wire 

Let us consider a long straight wire carrying a current i. From the symmetry of wire, it is clear 

that the magnetic lines of force are concentric circles centred on the wire 

 

 

 

                                                            i 

dl⃗⃗  ⃗ 

 P 

 

r 

 

                                                           Figure 7 

Let P be a point at distance r from the wire at which magnetic field is to be required. Let us 

consider a circular path of radius r passing through P. By symmetry, the value of magnetic field 

is same at each point on the circular path. B⃗⃗  and dl⃗⃗  ⃗ are always directed along the same direction. 

Therefore, the line integral of B⃗⃗  along the boundary of circular path is- 

∮ B⃗⃗ . dl⃗⃗  ⃗ = ∫Bdl cos 00 = B ∫ dl = B (2πr) 

Using Ampere’s circuital law- 
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∮ B⃗⃗ . dl⃗⃗  ⃗ = μ0 i 

Putting for  ∮ B⃗⃗ . dl⃗⃗  ⃗, we get- 

                                                       B (2πr) = μ0 i 

Or                                                     B = 
μ0

2π

i

r
 

Or                                                    B = 
μ0

4π

2i

r
 

This is the required magnetic field. 

7.7 MAXWELL CORRECTION IN AMPERE’S LAW 

Let us examine the validity of this equation for time varying fields. Since divergence of curl of 

any vector quantity is always zero, therefore div curl H⃗⃗  = 0. Then equation (18) curl H⃗⃗ =J    

implies- 

                                                                     div J  = 0                                      .....(20) 

We knowthe equation of continuity- 

                                                                   div J  + 
∂ρ

∂t
 = 0                                .....(21) 

or                                                               div J  = - 
∂ρ

∂t
                                    .....(22) 

Here ρ is the charge density. 

From equations (20) and (22), we get- 

∂ρ

∂t
 = 0 

or                                                                   ρ = constant 

i.e. charge density is static. Thus we conclude that Ampere’s circuital law ∮ H⃗⃗ . dl⃗⃗  ⃗ = i is valid only 

for steady state conditions and is insufficient for the cases of time varying fields. Hence to 

include time varying fields, Ampere’s law must be modified. Maxwell investigated 

mathematically how one could alter Ampere’s equation ∮ H⃗⃗ . dl⃗⃗  ⃗ = i so as to make it consistent 

with the equation of continuity. 

Maxwell assumed that the definition of current density J  is incompleteand hence something say 

Jd⃗⃗⃗  must be added to it.Thus, the total current density, which must be solenoidal, becomesequal to 

J  + Jd⃗⃗⃗  . Using this assumption, equation (18) curl H⃗⃗ =J  ⃗becomes- 
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                                                                curl H⃗⃗ =J   + Jd⃗⃗⃗                                       .....(23) 

Now let us identify Jd⃗⃗⃗   . Let us take divergence of equation (23) as- 

                                                div curl H⃗⃗ = div (J   +  Jd⃗⃗⃗    )                                      .....(24) 

But we know that the divergence of curl of any vector quantity is always zeroi.e. div curl H⃗⃗   = 0, 

therefore, the above equation takes the form as- 

                                                     div (J   +  Jd⃗⃗⃗    )  = 0   

or                                                  div J  + div  Jd⃗⃗⃗   = 0 

or                                               div  Jd⃗⃗⃗   = - div J                                                         .....(25) 

We know the equation of continuity- 

                                                                   div J  + 
∂ρ

∂t
 = 0                                 

or                                                               div J  = - 
∂ρ

∂t
 

Putting for div J  in equation (25), we get- 

                                                                   div  Jd⃗⃗⃗   =  
∂ρ

∂t
                                                  .....(26) 

But by differential form of Gauss theorem we have- 

                                                                    div D⃗⃗  = ρ                                                     .....(27) 

where D⃗⃗  is electric displacement vector. 

Using equation (27) in equation (26), we get- 

                                                                  div  Jd⃗⃗⃗   =  
∂(div D⃗⃗ )

∂t
 

= div (
∂D⃗⃗ 

∂t
) 

or                                                                     Jd⃗⃗⃗      =    (
∂D⃗⃗ 

∂t
)                                          .....(28)   

Therefore, the modified form of Ampere’s law becomes- 

                                                                     curl H⃗⃗ = J   +  Jd⃗⃗⃗    = J   + (
∂D⃗⃗ 

∂t
)           .....(29) 
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The additional term which Maxwell added in Ampere’s circuital law to include time varying 

fields is called ‘displacement current’ because it arises when electric displacement vector D⃗⃗  

changes with time. By the addition of this term Maxwell assumed that this term i.e.  

displacement current is as effective as the conduction current J  for producing magnetic field. 

Characteristics of displacement current 

(a) Displacement current is a current only in the sense that it produces a magnetic field. It 

has none of the other properties of current since it is not related with the motion of a 

charge.  

(b) Displacement current has a finite value even in a perfect vacuum where there is no charge 

at all. 

(c) The magnitude of displacement current is equal to the rate of change of electric 

displacement vector i.e. Jd⃗⃗⃗      =    (
∂D⃗⃗ 

∂t
) 

(d) Displacement current in a good conductor is negligible as compared to the conduction 

current at any frequency less than optical frequencies. 

Example 5:A 50 V voltage generator at 20 MHz is connected to the plates of air dielectric 

parallel plate capacitor with plate area 2.8 cm2 and distance of separation is 0.02 cm. Find the 

maximum value of displacement current density and displacement current. 

Solution: Vo = 50 Volt, f = 20 MHz = 20×106 Hz, S = 2.8 cm2 = 2.8×10-4 m2, d = 0.02 cm = 

2×10-4 m 

V = Vo sin ωt = Vo sin 2πft = 50 sin (2π×20×106 t ) 

Displacement current density Jd⃗⃗⃗      =    (
∂D⃗⃗ 

∂t
) 

                                                        = 
∂(ε0E⃗⃗ )

∂t
 = 

∂

∂t
(ε0

V

d
) 

= 
ε0

d

∂V

∂t
 

 = 
ε0

d

∂{50 sin ( 2π×20×106 t )}

∂t
 

= 
ε0

d
{50cos (2π × 20 × 106 t)}× 2π × 20 × 106 

= 
8.85×10−12

2×10−4
{50 cos(2π × 20 × 106 t)}× 2π × 20 × 106 

 = 277.8 cos (4π×107 t) Amp/m2 

Displacement current id = Jd×S= 277.8 cos (4π×107 t) ×2.8×10-4 
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=0.0778×2.8 cos( 4π×107 t) Amp  

 

Self Assessment Question (SAQ) 8: Choose the correct option- 

The concept of displacement current was proposed by- 

(i) Faraday                       (ii) Gauss                           (iii) Ampere                   (iv) Maxwell 

Self Assessment Question (SAQ) 9:Choose the correct option- 

Maxwell’s modified Ampere’s law is valid- 

(i) only when electric field does not change    (ii) only when electric field varies with time 

(iii) in both of the above situations        (iv) none of these 

Self Assessment Question (SAQ) 10: Choose the correct option- 

The displacement current arises due to- 

(i) negative charges only   (ii) positive charges only    (iii) both negative and positive charges  

(iv) time varying electric field 

Self Assessment Question (SAQ) 11: Choose the correct option- 

Displacement current goes through the gap between the plates of a capacitor when the charge of 

a capacitor is- 

(i) zero             (ii) decreasing            (iii) increasing         (iv) remaining constant 

Self Assessment Question (SAQ) 12:Choose the correct option- 

Displacement current is a current only in the sense that- 

(i)  it produces a magnetic field (ii) it produces electric field      (iii) it produces both fields   (iv) 

none of these 

7.8 SUMMARY 

In this unit, you have studied about Lorentz force and Biot-Savart law. You have studied that a 

current carrying conductor produces magnetic field around it. You have also studied about the 

magnetic force between two current carrying conductors and established its expression and 

deduced the definition of ampere. You have seen that the conductors attract each other if currents 

in them are in the same direction and repel each other if currents are in opposite directions. In 

this unit, you have studied and analyzed Ampere’s circuital law and Maxwell’s correction in it. 
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According to Ampere’s circuital law, the line integral of magnetic induction around a closed path 

is equal to μ0 times the net current enclosed by the path. You have also seen that Ampere’s law 

holds for closed path of any shape. You have known about displacement current and its peculiar 

characteristics. To present the clear understanding and to make the concepts of the unit clear, 

many solved examples are given in the unit. To check your progress, self assessment questions 

(SAQs) are given place to place. 

7.9 GLOSSARY 

Magnetic field- the region surrounding a magnetic 

Magnetic induction- a vector which specifies the magnitude and direction of magnetic field at    a 

point 

Simultaneous – concurrent, coincident 

Electric force- the force experienced by a charge placed at a point in an electric field  

Magnetic force- the force experienced by a charge in a magnetic field 

Infinitesimal- minute, tiny 

Vacuum- emptiness, vacuity 

Characteristics- features, qualities 

7.10 TERMINAL QUESTIONS 

1. Explain the magnitude and direction of the force acting on a charge moving in a magnetic 

field. When is the force maximum and when minimum?   

2. Explain Biot Savart law. 

3. Establish the expression for magnetic force acting between two long, parallel and straight 

current carrying conductors. 

4. Both  the electric and magnetic field can deflect an electron. What is the difference between 

these deflections? 

5.  Explain Ampere’s circuital law. Give its significance. Derive its differential form. 

6.  Explain Maxwell’s correction in Ampere’s circuital law. 

7. Explain the concept of Maxwell’s displacement current and show how it led to the 

modification of the Ampere’s law. 
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8. Obtain the generalized form of Ampere’s circuital law. Comment on the concept of the 

displacement. 

9.  Throw the light on characteristics of displacement current. 

10. Using Ampere’s circuital law, establish the expression of magnetic field due to a long current 

carrying wire. 

11. Give a comparison between Coulomb’s law and Biot-Savart law.  

7.11 ANSWERS 

Self Assessment Questions (SAQs): 

1. Given v = 2×108 m/sec, B = 0.50 Wb/m2 , q = e = 1.6×10-19 C, m= 9×10-31 Kg 

Using F = qvB sinθ, we get- 

F = 1.6×10-19×2×108×0.50×sin 900 = 1.6×10-11 N  (towards north, Using Fleming’s left    hand 

rule) 

Using  F = ma 

Or a = F/m = 1.6×10-11/ 9×10-31 = 1.8 ×1019 m/sec2 

2.  Using F = qvB sinθ = evB sin 900 = evB 

    Using Fleming’s left hand rule, the direction of the force is along –z- axis. 

3. Given K = 2MeV = 2×106×1.6×10-19= 3.2×10-13 J, B = 2.5 T, m = 1.65×10-27 Kg 

    K = 
1

2
 mv2   or v = √

2K

m
 = √

2×3.2×10−13

1.65×10−27  = 6.23×104 m/sec2 

    Using F = qvB sinθ = 1.6×10-19×6.23×104×2.5×sin 900 = 7.88×10-12 N 

4. (iv) 900 

5. (iii) both electric and magnetic fields     

6. Given l = 200cm = 2 m, i1 = i2 = 0.4 amp, r = 40 cm = 0.4 m  

    F/l = 
μ0

4π

2i1i2

r
 = 1× 10-7×

2×0.4×0.4

0.4
 = 8×10-8 N/m (attractive) 

7. The statement is false because one current carrying wire will experience force of attraction due 

to the magnetic field produced by the other current carrying wire. 
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8.  (iv) Maxwell 

9. (iii) in both of the above situations 

10. (iv) time varying electric field 

11. (ii) decreasing            (iii) increasing 

12. (i)  it produces a magnetic field 

Terminal Questions: 

4. The force exerted by a magnetic field on a moving charge is perpendicular to the motion of the 

charge; hence the work done by this force on the charge is zero and therefore the kinetic 

energy of the charge does not change. In an electric field the deflection is in the direction of 

the field, hence the kinetic energy changes. 
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8.1 INTRODUCTION 

In the previous unit, you have studied and learnt about Lorentz force, Bio-Savart law and 

magnetic force between current carrying conductors. In that unit, you have also studied about 

Ampere’s circuital law and Maxwell’s correction in that. In the previous unit, you have learnt 

about displacement current and its peculiar characteristics. In the present unit, you will learn 

about curl and divergence of magnetic inductionB⃗⃗ , vector potential and its importance, magnetic 

flux etc. You will also study about magnetic fields due to circular and solenoidal currents and 

establish the expressions for the field. When a current loop is placed in a uniform magnetic field, 

then it experiences a torque. In this unit, you will learn about this torque and establish an 

expression for the torque acting on that current carrying loop in a uniform magnetic field. 

8.2 OBJECTIVES 

After studying this unit, you should be able to- 

 understand curl and divergence of B⃗⃗  

 understand vector potential and magnetic flux 

 calculate the magnetic fields for circular and solenoidal currents 

 understand torque on a current carrying loop and solve problems 

8.3 CURL OF �⃗⃗�  

The curl of a vector field at any point is defined as a vector quantity whose magnitude is equal to 

the maximum line integral per unit area along the boundary of an infinitesimal test area at that 

point and whose direction is perpendicular to the plane of the test area. The curl of vector field is 

sometimes called circulation or rotation. 

According to Ampere’s circuital law, “The line integral of magnetic induction around a closed 

path is equal to μ0 times the net current enclosed by the path” i.e. 

∮ B⃗⃗ . dl⃗⃗  ⃗ = μ0 i                                                      .....(1) 

where i is the current enclosed by the path. 

Let us consider a region in which there is a steady flow of charge. The current density in this 

region remains constant i.e. it does not change with time however its value may vary from place 

to place. Now let us consider a closed path in this region as shown in figure (1). The total current 

enclosed by this path is the flux of current density through the surface bounded by closed path 

i.e. the total current enclosed by the path given as- 

                                                                   i = ∬J . dS⃗⃗⃗⃗                                                  …..(2) 
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where J  is the current density and dS⃗⃗⃗⃗  is small element of area at the point of current density J  

inside the closed path. 

Putting the value of i from equation (2) in equation (1), you get- 

∮ B⃗⃗ . dl⃗⃗  ⃗ = μ0 [∬J . dS⃗⃗⃗⃗  ] 

 

Using Stoke’s theorem, you can convert line integral into surface integral as- 

∬curl B.⃗⃗  ⃗ dS⃗⃗⃗⃗  = μ0 [∬J . dS⃗⃗⃗⃗  ] 

∬[curl B⃗⃗ –μ0J ]. dS⃗⃗⃗⃗  = 0 

As the surface is arbitrary, therefore you have- 

curl �⃗�  - μ0J  = 0 

                                                             curl �⃗�  = μ0J                                                               …..(3) 

Thus the curl of �⃗�  is equal toμ0 times current density. The above equation (3) is the differential 

form of Ampere’s circuital law. The above relation indicates that the magnetic induction at a 

point is derived from the given value of J  at that point by integration. However this equation is 

not enough to derive B⃗⃗  at a point because for the same value of J  at the point another term may be 

added to B⃗⃗ . We, therefore, need another condition. 

8.4 DIVERGENCE OF  �⃗⃗�  

The divergence of a vector function at certain point is defined as the outward flux of the vector 

field per unit volume enclosed through an infinitesimal closed surface surrounding the point. The 

divergence of a vector function is scalar quantity. It should be noted that the divergence itself is 

simply an operator and has no physical meaning in itself. After operating on suitable physical 

vector functions, it represents various significant physical scalar quantities. If the divergence of 

any vector function in a region is zero, it means that the flux of the vector function entering any 

element of this region is equal to that leaving it. 

According to Biot-Savart law the magnetic field at a point due to a current element idl⃗⃗  ⃗ at a point 

having position vector r  relative to current element is given by- 

dB⃗⃗⃗⃗  ⃗ = 
μ0

4π

i dl⃗⃗  ⃗×r⃗ 

r3
                                                  …..(4) 

The magnetic field due to complete circuit current is given as- 
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B⃗⃗  = 
μ0

4π
∮

i dl⃗⃗  ⃗×r⃗ 

r3
                                                …..(5) 

Taking divergence on both sides, you get- 

div B⃗⃗   = ∇. B⃗⃗   = ∇. {
μ0

4π
∮

i dl⃗⃗  ⃗×r⃗ 

r3
}                                                …..(6) 

or                                             div B⃗⃗   = 
μ0

4π
∮∇. {

i dl⃗⃗  ⃗×r⃗ 

r3
} 

But∇ (
1

r
) = - 

r⃗ 

r3
 

Hence the above relation can be written as- 

                                               div B⃗⃗   = - 
μ0

4π
∮∇. {idl⃗⃗  ⃗ × ∇ (

1

r
)} 

Using vector identity ∇. (A⃗⃗ × B⃗⃗ ) = B⃗⃗ .(∇ × A⃗⃗ )- A⃗⃗ .(∇ × B⃗⃗ ), the above expression becomes- 

                                  div B⃗⃗   = - 
μ0

4π
∮∇ (

1

r
) . (∇ × idl⃗⃗  ⃗)- (idl⃗⃗  ⃗). {∇ × ∇ (

1

r
)}                           …..(7) 

Now let us interpret the result. You that the magnetic field is specified at field point and the 

current element idl⃗⃗  ⃗ is due to source point. The field point depends on variables (x,y,z) but on the 

other hand the field source idl⃗⃗  ⃗ does not depend on variables (x,y,z), therefore it is obvious that  

∇ × (idl⃗⃗  ⃗) = 0                                                      …..(8) 

Also you know that the curl of gradient of a scalar function is always zero i.e. 

                                                     curl grad (
1

r
)  = 0      or ∇ × ∇ (

1

r
) = 0                         …..(9) 

 Now using relation (8) and (9) in equation (7), you get- 

                                         div B⃗⃗   = - 
μ0

4π
∮∇ (

1

r
) . 0- (idl⃗⃗  ⃗). {0} = 0 

 i.e.                                                   div B⃗⃗   = 0                                                                   …..(10) 

The above condition holds for all superposition of such fields or for the field of any distribution 

of currents. The equation (10) implies that the magnetic field is solenoidal. 

8.5 VECTOR POTENTIAL 

The vector identity div curl A ≡ 0 shows that the solution of the equation div B⃗⃗   = 0 can be 

represented in the form as- 
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B⃗⃗  = curl A⃗⃗                                                                …..(11) 

The vector field  A⃗⃗ , the curl of which is equal to the magnetic field B⃗⃗  is known as vector potential 

of a magnetic field B⃗⃗ . 

A⃗⃗  will be specified uniquely only if its divergence as well as its curl is given. We choose  

                                                                      div A⃗⃗   = 0                                                    …..(12) 

This choice is called Lorentz gauge- the gauging condition for the potential. The arbitrariness in 

the choice of the vector potential indicates that the vector potential plays only an auxiliary role 

and cannot be measured experimentally. 

Let us derive equation for vector potential. We know that ∇ × B⃗⃗  = μ0J  

Putting the value of B⃗⃗  from equation (11), the above equation becomes- 

∇ × (∇ × A⃗⃗ ) = μ0J  

Using vector identity   ∇ × (∇ × A⃗⃗ )= ∇(∇. A⃗⃗ )- (∇. ∇)A⃗⃗ , the above equation becomes- 

∇(∇. A⃗⃗ )- (∇. ∇)A⃗⃗  = μ0J  

Or                                                       grad div A⃗⃗   - ∇2A⃗⃗ = μ0J  

Using Lorentz gauge given by equation (12), the above relation becomes- 

                                                        0 - ∇2A⃗⃗  =  μ0J  

Or ∇2A⃗⃗  =  - μ0J                                                         …..(13)  

In terms of Cartesian components of A⃗⃗ , we can write- 

∇2Ax = - μ0 Jx 

∇2Ay = - μ0 Jy                                         …..(14) 

∇2Az = - μ0 Jz 

 

Each component of the vector potential thus satisfies Poisson’s equation (∇2φ =  − 
ρ

ε0
 ) which 

has the solution as- 
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φ(r ) = 
1

4πε0
∭

ρ(r′)

|r⃗ −r′⃗⃗  ⃗|
dV′                                                         …..(15) 

If all currents are concentrated in a finite region of space, then by analogy with equation (15), the 

solution of equations (14) can be written as- 

 

                                             Ai(𝑟 ) = 
μ0

4π
∭

Ji(r
′)

|r⃗ −r′⃗⃗  ⃗|
dV′                                                       …..(16) 

where i stands for x, y and z. In vector form, we have- 

A⃗⃗ (r ) = 
μ0

4π
∭

J (r′)

|r⃗ −r′⃗⃗  ⃗|
dV′                                               …..(17) 

In a case of a filamentary current i through a differential length dl’ along the wire, we have- 

                                                  J dV' = (i/S)(Sdl’) = i dl’ 

Now the above equation becomes- 

dA⃗⃗ (r ) = 
μ0

4π

i(r′⃗⃗ )dl′

|r⃗ −r′⃗⃗ |
                                                        …..(18) 

Summing up over all volume elements of the filament, we get- 

A⃗⃗ (r ) = 
μ0

4π
∭

i(r′)

|r⃗ −r′⃗⃗  ⃗|
dV′                                                …..(19) 

The components of A⃗⃗  vary as 1/r, like electric potential, which does not diverge with in a charge 

distribution. As divergence of a curl of a vector is always zero and div B⃗⃗  = 0 can be written as a 

curl of a vector and thus A⃗⃗  is a vector. Due to these reasons A⃗⃗  is called by the name of vector 

potential. 

8.6 MAGNETIC FLUX 

Let us consider a plane placed in a magnetic field. The magnetic flux linked with that plane is 

defined as the dot (scalar) product of magnetic field (B⃗⃗ ) and the area of the plane (A⃗⃗ ) i.e.  

                                                  The magnetic flux φ = B⃗⃗ .A⃗⃗                                                 …..(20) 

If the perpendicular to the plane makes an angle θ with the direction of magnetic field, then- 
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      The magnetic flux φ = BA cosθ                                      …..(21) 

 

                      Perpendicular to the plane 

 

                                                                             θ                                 B⃗⃗  

 

 

 

 

 

 

                                                                         Figure 1 

From equation (21), you can write- 

 φ = (B cosθ) A                                                            …..(22) 

= component of the magnetic field perpendicular to the plane× area of the plane 

Thus, you can define the magnetic flux as the product of the component of the magnetic field 

perpendicular to the plane and the area of the plane. 

If you consider the plane perpendicular to the uniform magnetic field, then the product of the 

magnitude of the field and the area of the plane is called the magnetic flux φ linked with the 

plane i.e.  

                                                                         Φ = BA           (since θ = 00)                   …..(23) 

If infinitesimal small surface area (dS⃗⃗⃗⃗  ) is considered, then magnetic flux linked with that surface 

area is given as- 

                                                            dφ = B⃗⃗ .dS⃗⃗⃗⃗                           …..(24) 

The total magnetic flux linked with the entire surface- 
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                                                             φ = ∬B⃗⃗ . dS⃗⃗⃗⃗                           …..(25) 

φ is positive if the outward normal to the plane is in the same direction as B⃗⃗  and is negative if the 

outward normal is opposite to B⃗⃗ . 

The SI unit of the magnetic flux φ is weber (Wb). 

Since from equation (23), you have- 

                                                                           B = φ/A 

Thus the unit of magnetic flux is also expressed in weber/meter2 ( Wb/meter2 ). That is why the 

magnetic field induction B  is also called the magnetic flux density. 

The CGS unit of magnetic flux is Maxwell. 

                                                                  1 weber = 108 Maxwell 

The magnetic flux is a scalar quantity while magnetic flux density is a vector quantity. 

You may also express the magnetic flux in terms of the magnetic lines of force. We can represent 

a magnetic field by magnetic lines of force. If you draw limited lines of force so that in a 

magnetic field B = 1 Wb/meter2 only one line of force passes per meter2 through an area 

perpendicular to B⃗⃗ in a magnetic field  B = 2 Wb/meter2 only two lines of force pass per meter2 

perpendicular to B, and so on, then these lines are called the lines of flux. In a magnetic field the 

number of lines of flux passing per meter2through an area perpendicular to the magnetic field is 

equal to the magnetic flux linked with that plane. 

If θ = 900 i.e. the plane is parallel to the magnetic field, then no flux-line will pass through it and 

the magnetic flux linked with that plane will be zero. 

Example 1:  A coil having 1000 turn and area 0.20 meter2 is placed normally in a uniform 

magnetic field. The magnetic field changes from 0.20 Wb/meter2 to 0.60 Wb/meter2 uniformly 

over a period of 0.01 sec. Calculate the change in magnetic flux associated with the coil. 

Solution: Given Area of coil A = 0.20 meter2, B1 = 0.20 Wb/meter2, B2 = 0.60 Wb/meter2 

The magnetic flux φ = BA cosθ 

Since the coil is placed normally in a magnetic field, therefore θ = 00 

Therefore, the magnetic flux φ = BA cos 00 = BA 

The change in magnetic flux due to a change in magnetic field B- 
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                                                           Δφ = (ΔB)×A 

                                                                 = (B2 – B1 )× A = (0.60 - 0.20)×0.20 

                                                                 = 0.08 Wb 

Example 2:Find the magnetic flux linked with a rectangular coil of size 6 cm × 10 cm placed at 

right angle to a magnetic field of 0.5 Wb/meter2. 

Solution: Given, The area of coil A = 6 cm × 10 cm = 60 cm2 = 60× 10-4 meter2 = 6×10-3 meter2 

Magnetic field B = 0.5 Wb/meter2 

Since the coil is placed at right angle to a magnetic field, therefore the angle between the normal 

to the plane of coil and the direction of magnetic field θ = 00 

The magnetic flux linked with the coil φ = BA cosθ = 0.5×6×10-3× cos 00 = 3×10-3 Wb 

Example 3: 5.5× 10-4 magnetic flux lines are passing through a coil of electrical resistance 20 

ohm. If the number of magnetic flux lines reduces to 5×10-5 in a short time, find the change in 

magnetic flux. 

Solution: Given, Initial magnetic flux φ1 = 5.5× 10-4 Wb, Final magnetic flux φ2 = 5×10-5 

Therefore, the change in magnetic flux Δφ = φ2 – φ1 

                                                                     = 5×10-5 - 5.5× 10-4 = - 5.0×10-4 Wb 

Self Assessment Question (SAQ) 1:Choose the correct option- 

The divergence of a vector quantity is always- 

(i) a vector                       (ii) a scalar              (iii) sometimes a scalar and sometimes a vector   

(iv) none of these 

Self Assessment Question (SAQ) 2:Choose the correct option- 

The curl of a vector function is always- 

(i) a vector                          (ii) a scalar                  (iii) sometimes a scalar and sometimes a vector    

(iv) neither a scalar nor a vector 

Self Assessment Question (SAQ) 3:Choose the correct option- 

For a solenoidal vector- 
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(i) curl of that vector = 0     (ii) gradient of that vector = 1     (iii) divergence of that vector = 0 

(iv) divergence of that vector =1 

Self Assessment Question (SAQ) 4:Choose the correct option- 

(i) 1 weber = 108 maxwell                (ii) 1 maxwell = 108 weber      (iii) 1 weber = 10 maxwell   

(iv) none of these   

Self Assessment Question (SAQ) 5:A coil of wire enclosing an area of 200 cm2 is placed at an 

angle of 300 with a magnetic field of 0.10 Wb/meter2. What is the magnetic flux linked with the 

coil? 

Self Assessment Question (SAQ) 6:If the divergence of any vector function in a region is zero, 

what does it mean? 

Self Assessment Question (SAQ) 7:Why is the magnetic field induction B also called the 

magnetic flux density? 

8.7 MAGNETIC FIELD FOR CIRCULAR CURRENTS 

Let us consider a circular loop of radius a, carrying current i (Figure 2). Let P be a point at the 

axis of the loop at a distance x from the centre at which the magnetic field is required. 

 A 

dl 

 r                              dBcosα         dB 

 

     α α 

 αP α dB sinα 

                                                                                                                               dB’ 

 dB’ cosα 

 dl B x 

                   Figure 2 

a 

 

O 
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Let us consider a small current element of length dl at point A (at the top) of the loop, at right 

angles to the plane of the page and directed outward. Let r be the distance of this small element 

from the point P.  

Using Biot-Savart law, the magnetic field due to this element at point P is- 

dB   = 
μ0

4π

i dl⃗⃗  ⃗×r⃗ 

r3
                                                                …..(26) 

The direction of dB is perpendicular to the plane containing dl and r and is given by right hand 

screw rule. As the angle between dl and r  is 900, therefore the magnitude of the magnetic field 

(magnetic induction) is given by- 

                                                              dB = 
μ0

4π

idlsin900

r2
 =  

μ0

4π

idl

r2
                                     …..(27) 

The direction of magnetic field dB  is in the plane of the paper and at right angles to the line r, as 

shown. Let us resolve this magnetic field dB into its components- 

(i) The component of dB along the axis of loop = dB sin α    (horizontal component) 

(ii) The component of dB at right angles to the axis of loop = dB cos α (vertical component) 

Now let us consider another identical current element at point B (at the bottom of the loop) just 

opposite to the previous element of same length dl, which is at right angle to the plane of the 

page but directed inward. The magnetic field dB'  due to this current element at point P will be 

equal in magnitude to dB but directed as shown. It is obvious that the components of dB and dB' 

at right angles to the axis (i.e. vertical components) are equal in magnitude but opposite in 

direction. Hence they cancel to each other. But the horizontal components i.e. the components 

along the axis are in same direction and hence they are added up. Thus the resultant magnetic 

field at point P is due to horizontal components only. 

Let us imagine that the entire loop is divided into such current elements, the resultant magnetic 

field B at point P is directed along the axis and its magnitude is given by- 

                                                   B = ∮dB sin α 

Putting for dB in the above, you get- 

                                             B = ∮
μ0

4π

idl

r2
sin α 

                                                = 
μ0

4π

𝑖

𝑟2 ∮dl sin α                                                               …..(28) 

In right angled triangle AOP, sin α =
AO

AP
= 

a

r
 = 

a

√a2+x2
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Therefore, from equation (28), you have- 

                                                        B = 
μ0

4π

𝑖

𝑟2 ∮dl
a

√a2+x2
 

                                                            = 
μ0

4π

𝑖

𝑟2

a

√a2+x2 ∮dl 

But ∮dl = 2π r (the circumference of the loop) 

Therefore,                                              B = 
μ0

4π

𝑖

𝑟2

a

√a2+x2
×2π a 

                                                                  = 
μ0

2

𝑖

𝑟2

𝑎2

√a2+x2
 

Or                                                     B = 
μ0ia2

2(a2+x2)
3
2

                                                              …..(29) 

If there are n turns in the loop, then each turn will contribute equally to B. Therefore, 

                                                           B = 
μ0nia2

2(a2+x2)
3
2

                                                             …..(30) 

The direction of the magnetic field B is along the axis of the loop. 

 At the centre of the loop, x =0, therefore, from equation (31), you have- 

                                                            B = 
μ0nia2

2(a2+0)
3
2

 = 
μ0nia2

2a3  = 
μ0ni

2a
                                       …..(31) 

Again the direction of the magnetic field is perpendicular to the plane of the loop i.e. along the 

axis of the loop. 

If the loop is small, then x≫a, (i.e. a can be neglected in comparison of x) therefore, from 

equation (30), you have- 

                                                           B = 
μ0nia2

2(a2+x2)
3
2

 = 
μ0nia2

2x3
                                                …..(32) 

8.8 MAGNETIC FIELD FOR SOLENOIDAL CURRENTS 

A solenoid is a long insulated copper wire wound over a tube of card-board or china clay in a 

close-packed cylindrical helix. When electric current is passed through the solenoid, a magnetic 

field is produced around and within the solenoid. 
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Figure 3 shows the lines of force of the magnetic field due to a solenoid. The magnetic lines of 

force inside the solenoid are nearly parallel which indicate that the magnetic field within the 

solenoid is uniform and parallel to the axis of the solenoid. 

 

 

 

 

 

 

 

 

 

       +                      - 

 

                                                                                Figure 3 

Let there be a long solenoid of radius a metre and carrying a current of i ampere. Let the number 

of turns per unit length of the solenoid be n. Let P be a point on the axis of the solenoid (Figure 

4). 

                                                                 dx 

                                                         A            B 

aαC r dα 

O   α       P P’ 

x 

 

                                                                      Figure 4 
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Let us imagine that the solenoid is divided up into a number of narrow coils and let us consider 

one such coil AB of width dx. The number of turns in this coil is n dx. Let x be the distance of 

the point P from the centre O of this coil. The magnetic field at P due to this elementary coil is 

given by- 

                                                              dB = 
μ0

(n dx)ia2

2(a2+x2)
3
2

                                                         …..(33) 

Let r be the distance of the coil AB from P and dα the angle subtended by the coil at P. Then in Δ 

ABC, we have- 

                                                                    sin α = 
BC

AB
 = 

r dα

dx
 

 or                                                               dx = 
r dα

sin α
 

 But in right angled triangle APO,    a2 + x2 = r2 

Putting for dx and (a2 + x2) in equation (33), you get- 

dB = 
μ0(n 

r dα

sinα
)ia2

2(r2)
3
2

 = 
μ0n i a2 dα

2r2 sin α
 

                                                                         =(
a2

r2
)

μ0n i dα

2 sin𝛼
 

But in right angled triangle AOP,  (
a2

r2
) = sin2 α, therefore- 

                                                  dB = 
μ0n i dα

2 sin𝛼
 sin2α = 

1

2
μ

0
ni sin α dα                                …..(34) 

The magnetic field B at point P due to entire solenoid can be obtained by integrating the above 

expression eq. (34) between the limits α1 and α2, where α1 and α2 are the semi-vertical angles 

subtended at point P by the first and the last turn of the solenoid respectively (Figure 5). Thus- 

Total magnetic field B = ∫ dB
α2

α1
 = ∫

1

2
μ

0
ni sin α dα

α2

α1
 

                                                      = 
1

2
μ

0
ni ∫  sin α dα

α2

α1
 = 

1

2
μ

0
ni[– cos α]

α1

α2
 

Or                                       B = 
1

2
μ

0
ni[cos α1 − cos α2]                                            …..(35) 

When point P is well inside a very long solenoid, then α1 ≈ 0 and α2 ≈ 1800 so that cos α1 ≈ 1 and 

cos α2 ≈ -1. Therefore, equation (35) becomes- 
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                                                                B = 
1

2
μ

0
ni[1 − (−1)] = 

1

2
μ

0
ni[2] 

Or                                                            B = μ
0
ni                                                           …..(36) 

 

 

 α2 

     α1 P’ 

 P 

 

                                                                            Figure 5 

 

At the end of the last turn, at P’ , α1 = 0 and α2 = 900 , therefore from equation (35)- 

                                                                B = 
1

2
μ

0
ni                                                        …..(37) 

At the end of the first turn, α1 = 900 and α2 = 1800, therefore from equation (35), you get- 

B = 
1

2
μ

0
ni                                                        …..(38) 

Thus, the magnetic field at the ends of a long solenoid is half of that at the centre. If the solenoid 

is sufficiently long, the magnetic field within it, except near the ends, is uniform. It does not 

depend upon the length and area of cross-section of the solenoid. As a parallel plate capacitor 

produces uniform electric field similarly, a solenoid produces a uniform magnetic field. The 

uniform magnetic field within a long solenoid is parallel to the solenoid axis. Its direction along 

the axis is given by a curled straight right hand rule.                                                                                                                

8.9 TORQUE ON A CURRENT LOOP IN A UNIFORM 

MAGNETIC FIELD 

Let us consider a rectangular wire loop PQRS, of length l and width b, carrying a current i be 

suspended in a uniform magnetic field B⃗⃗  as shown in figure 6. Each side of the current loop 

experiences a magnetic force in the magnetic field. 
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The magnitude of the force acting on side PQ, F1 = i B l sin θ  

Since the vertical side of loop PQ is always perpendicular to the magnetic field B⃗⃗ . Therefore, θ = 

900. Thus the force F1 = i B l sin 900  = i B l 

 

 

 

 

  Q F3
⃗⃗⃗⃗  

  B⃗⃗  

 i 

                                                                                                R 

F1
⃗⃗⃗⃗  

 

                                                    i 

 

                                                  P  F2
⃗⃗⃗⃗  

 

 S 

  

F4
⃗⃗⃗⃗  

                                                                            Figure 6 

Similarly, the magnitude of magnetic force acting on side RS, F2 = i B l sin θ 

Since the vertical side of loop RS is always perpendicular to the magnetic field B⃗⃗ . Therefore, θ = 

900. Thus the force F2 = i B l sin 900  = i B l 

Thus, the magnitudes of magnetic forces acting on sides PQ and RS of loop are equal i.e. 

                                                                       F1 = F2  = i B l                                                …..(39) 
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By Fleming’s left hand rule, both forces  F1
⃗⃗⃗⃗   and F1

⃗⃗⃗⃗   are perpendicular to the page directed away 

from the reader and towards the reader respectively. Obviously, the both forces F1
⃗⃗⃗⃗   and F1

⃗⃗⃗⃗  are 

equal, parallel and opposite having different lines of action. These forces form a deflecting 

couple which tends to rotate the loop clockwise. 

 

  

F1
⃗⃗⃗⃗  

 Normal 

 

 i up 

 Axis of the loop 

   θ b 

           θ 

    

 

 i down 

               b sin θ 

 B⃗⃗  

 

F2
⃗⃗⃗⃗  

                                                                          Figure 7 

Let us suppose that at any time, the axis of the loop (normal to the plane of the loop) makes an 

angle θ with the direction of the magnetic field B⃗⃗  (as shown in figure 7). Then, the instantaneous 

moment of the deflecting couple, (or the torque) acting on the current loop-  

τ = magnitude of the force F1 (or F2) × perpendicular distance between the line of action of the           

forces 

   = i B l × b sin θ = i B ( l× b) sin θ 

 But l × b = Area of the current loop = A (say), therefore- 

                                                               τ = i B A sin θ                                                    …..(40) 

The magnetic force acting on the side QR of the loop, F3 = i B b  

Similarly, the magnetic force exerted on the side PS of the current loop, F4 = i B b  
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These forces F3
⃗⃗⃗⃗  and F4

⃗⃗⃗⃗  acting on the sides QR and PS of the current loop are equal and opposite 

to each other but their line of action is the same. Hence, they cancel each other and do not form a 

couple. Thus, the net force on the current loop is zero. Only the torque given by equation (40) 

acts on it. This torque deflects the current loop to a position in which the axis of the current loop 

is parallel to the magnetic field. In this position, θ = 00, therefore the torque becomes zero. This 

torque τ = i B A sin θ acts on every turn of the current loop. Therefore, if the loop is a close 

wound coil having N turns, the torque acting on the entire loop is- 

                                                              τ = N i B A sin θ     

or                                                         τ = N i A B sin θ        …..(41) 

Obviously, the unit of torque is Newton-meter. 

But term N i A is defined as the magnitude of the dipole moment M⃗⃗⃗  of the coil. Thus-  

                                                                           M = N i A                                                 …..(42) 

Therefore, equation (41) becomes- 

                                                            τ = M B  sin θ                                                          …..(43) 

In vector form-                                    𝜏 ⃗⃗  = M⃗⃗⃗  × B⃗⃗                                                                …..(44) 

This is the required expression. It is the basis to the theory of a moving coil galvanometer. This 

expression holds for closed loops of any shape, rectangular, circular or otherwise. 

Example 4: Two similar circular coils of wire having a radius of 70 mm and 60 turns have a 

common axis and are 18 cm apart. Find the strength of the magnetic field at a point midway 

between them on their common axis, when a current of 100 mA is passed through them. 

Solution: Given, a = 70 mm = 7 cm = 0.07 meter, n = 60, i = 100 m Amp = 0.10 amp, x = 

18cm/2 = 9 cm = 0.09 meter and μ0 = 4π × 10-7 Wb/Amp-meter 

The magnetic field due to either of the circular coils at a point on the axis distant x from the 

centre is- 

                                                                       B = 
μ0nia2

2(a2+x2)
3
2

 

                                                                           = 
4𝜋×10−7×60×0.10×(0.07)2

2(0.072+0.092)
3
2

 

                                                                           = 2.5 × 10-5 Tesla 
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Example 5: A 30 turns circular coil of diameter 16 cm carries a current of 6 amp. It is suspended 

vertically in a uniform horizontal magnetic field of 1 Tesla such that the magnetic field lines 

make an angle of 300 with the plane of the coil. Estimate the magnitude of the counter torque 

needed to be applied to prevent the coil from turning. 

Solution: Given, N = 30, radius of the coil r = 16 cm/2 = 8 cm = 0.08 meter, i = 6 amp, B = 1 

Tesla, θ = 900 – 300 = 600 

Area of the coil A = π r2 = 3.14 × (0.08)2 = 0.0201 meter2 

Torque τ = N i A B sin θ = 30 × 6 × 0.0201 × 1 × sin 600 = 3.13 Newton-meter 

Therefore, a counter torque of 3.13 Newton-meter should be applied. 

Self Assessment Question (SAQ) 8: A long solenoid of length 100 cm and radius of cross 

section 1.5 cm, has five layers of windings of 750 turns each. If the solenoid carries a current of 

650 Amp, compute the magnetic field at the centre of the solenoid. 

8.10  SUMMARY 

In this unit, you have learned about curl and divergence of magnetic field vector, vector 

potential, magnetic flux and derived the expressions for magnetic field induction for circular and 

solenoidal currents. We have defined the magnetic flux linked with that plane as the dot (scalar) 

product of magnetic field (B⃗⃗ ) and the area of the plane (A⃗⃗ ). In this unit, you have also studied the 

torque acting on a current loop in a uniform magnetic field and learned how the forces acting on 

two sides of a loop placed in a uniform magnetic field, form a deflecting couple. To make the 

concepts of clear, many solved examples are given in the unit. To check your progress, self-

assessment questions (SAQs) are given place to place. 

8.11  GLOSSARY 

Steady -  stable 

Flow-  stream, current 

Divergence- deviation, departure 

Magnetic flux – the surface integral of the magnetic field over that surface 

Magnetic flux density – a vector which specifies the magnitude and direction of magnetic field at 

a point 

8.12  TERMINAL QUESTIONS 

1. Prove that the curl of �⃗�  is equal toμ0 times current density. 
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2. How will you define the curl of a vector? 

3.  Establish the condition that the magnetic field is solenoidal.. 

4.  Give the significance of divergence. 

5.  Define vector potential. 

6. Give the importance of vector potential. 

7. A rectangular coil of size 0.5 meter×0.10 meter and 100 turns is placed perpendicular to a 

magnetic field of 0.01 Wb/meter2.  Evaluate the change in magnetic flux linked with the coil if it 

is drawn from the magnetic field. 

8. Is magnetic flux a scalar or vector? What about the magnetic flux density? 

9. Define magnetic flux. What is its unit? 

10.If the plane of a coil is parallel to the magnetic field, then what will be the magnetic flux 

linked with the coil? 

11. Why is A⃗⃗  called vector potential? 

12. Derive an expression for the torque acting on a rectangular coil of area A, carrying a current 

i, placed in a magnetic field. The angle between the direction of magnetic field and normal to the 

plane of coil is θ. 

13. Establish an expression for the magnetic field at a point on the axis of a circular coil carrying 

current, and hence at the centre of the coil. 

14.  Derive the following expression for the magnetic field of a solenoid- 

                                                           B = 
1

2
μ

0
ni[cos α1 − cos α2] 

Where symbols have their usual meanings. 

8.13 ANSWERS 

Self Assessment Questions (SAQs): 

1. (ii) a scalar 

2. (i) a vector 

3. (iii) divergence of that vector = 0 

4. (i) 1 weber = 108 maxwell 

5. Given,   Area of coil A = 200 cm2 = 200×10-4 meter2 = 2× 10-2 meter2 = 0.02 meter2, 

θ = 900 – 300 = 600, Magnetic field B = 0.10 Wb/meter2 
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The magnetic flux linked with the coil φ = BA cosθ 

= 0.10×0.02× cos 600 = 0.10× 0.02× 0.50 = 1× 10-4 Wb 

6. If the divergence of any vector function in a region is zero, it means that the flux of the 

vector function entering any element of this region is equal to that leaving it. 

7. Since φ = BA or B = φ/A 

Thus the unit of magnetic flux is also expressed in weber/meter2 ( Wb/meter2 ). That is 

why the magnetic field induction B  is also called the magnetic flux density. 

8. Given,  i = 650 amp, length l = 100 cm = 1 meter, n = 5 × 750 = 3750 turns/meter 

 The magnetic field at the centre of the solenoid, B = μ
0
ni  = 4π×10-7 ×3750×650 

 = 4×3.14×10-7×3750×650 = 3.061 Wb/meter2 

Terminal Questions: 

7. Given, Area of the coil A = 0.5 meter×0.10 meter = 5×10-3 meter2, Magnetic field B = 

0.01 Wb/meter2 

Since the coil is placed perpendicular to a magnetic field, therefore θ = 00 

Initial  magnetic flux linked with the coil φ1 = BA cosθ = BA cos 00 = BA 

                                                                       = 0.01×5×10-3 = 0.00005 Wb 

Since the coil is drawn from the magnetic field, no magnetic flux will be linked with the 

coil. Therefore, final magnetic flux linked with the coil φ2 =0 

Magnetic flux Δφ = φ2 – φ1 = 0- 0.00005 = - 0.00005 Wb  = - 5×10-5 Wb 

8. Magnetic flux is a scalar. Magnetic flux density is a vector. 

10. If the plane of a coil is parallel to the magnetic field, then no flux-line will pass through it     

and the magnetic flux linked with that plane will be zero. 
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9.1 INTRODUCTION 

Dear learners, in the previous unit, you have learnt about curl and divergence of magnetic field, 

magnetic flux and established the expressions for magnetic field for circular and solenoidal 

currents. You have also calculated the torque on a current loop in a uniform magnetic field. 

According to the modern view, the magnetic properties of a substance are endorsed to the 

electronic motions i.e. orbital motion and spin motion, in the atoms of the substance. Due to 

these motions, each atom is equivalent to a tiny current loop and produces magnetic field. In the 

unmagnetised state of the substance the current loops are oriented at random so that the magnetic 

fields mutually cancel. When the substance is magnetized by some process, all current loops are 

aligned with their planes parallel to one another and currents circulating in the same direction. 

Hence a resultant magnetic field is produced. In the present unit, you will study about current 

loop as a magnetic dipole and torque acting on a bar magnet in a uniform magnetic field. You 

will also study about potential energy of a magnetic dipole in a magnetic field. You will also 

learn about Ballistic galvanometer, its function and characteristics. 

9.2 OBJECTIVES 

After studying this unit, you should be able to- 

 understand magnetic dipole 

 understand torque on a bar magnet 

 calculate the torque on a bar magnet and solve problems 

 calculate the potential energy of a magnetic dipole in a magnetic field 

 understand ballistic galvanometer 

9.3 CURRENT LOOP AS A MAGNETIC DIPOLE 

You know that a current carrying solenoid or a coil or a current loop behaves like a bar magnet. 

A bar magnet having north and south poles at its ends is a magnetic dipole and therefore, a 

current loop is also a magnetic dipole. You can calculate the magnetic moment of a current loop. 

In the previous unit, you have learnt that the magnetic field due to a circular current loop of 

radius a and having n turns at a point on its axis, distant x from the centre of the loop, is given 

by- 

                                                            B = 
μ0nia2

2(a2+x2)
3
2

                                                               …..(1) 

The direction of this magnetic field is along the axis of the loop i.e. perpendicular to the plane of 

the loop. 

For axial points far from the loop, we have x≫a, then the above expression reduces to- 
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                                                                   B = 
μ0nia2

2x3                                                              …..(2) 

Multiplying by π in numerator and denominator in R.H.S., we get- 

                                                                 B = 
μ0πnia2

π2x3  

                                                                    = 
μ0

2π

πa2ni

x3
 = 

μ0

2π

Ani

x3
       (since πa2 = A, area of the loop) 

Or                                                        B = 
μ0

2π

niA

x3
                                                        …..(3) 

The quantity niA is called magnetic dipole moment M⃗⃗⃗  of the current loop. Thus- 

                                                                    M = niA                                                           …..(4) 

The unit of magnetic dipole moment is ampere-meter2. 

In vector form, we can write- 

M⃗⃗⃗  = niA⃗⃗                                                                       …..(5) 

The direction of magnetic dipole moment M⃗⃗⃗  is the same as the direction of the area vector A⃗⃗  of 

the current loop. Thus, equation (3), for the magnetic field due to a current loop at a distant axial 

point can be written as- 

B⃗⃗   = 
μ0

2π

M⃗⃗⃗ 

x3                                                                      …..(6) 

Thus, you see that B⃗⃗   and M⃗⃗⃗  have the same direction. 

9.4 TORQUE ON A BAR MAGNET IN A UNIFORM MAGNETIC 

FIELD 

You observe that when a bar magnet is suspended in a uniform magnetic field, it sets itself with 

its axis parallel to the magnetic field. It means that the magnet positioned in the magnetic field 

experiences a torque which rotates the magnet to a position in which the axis of the magnet is 

parallel to the magnetic field. A current loop in a magnetic field shows the same behavior. The 

current loop also experiences a torque which tends to rotate the loop to a position in which the 

axis of the loop is parallel to the magnetic field. The bar magnet and current loop, both are 

magnetic dipoles. 

According to the modern views regarding magnetism, each atom of the magnet is a small current 

loop and all these current loops are aligned in the same direction. In a magnetic field, the sum of 

the torques on these small loops is the torque acting on the magnet. 
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You have learnt that the magnitude of the torque exerted on a current loop positioned in a 

magnetic field  B⃗⃗  if its axis makes an angle θ with the direction of B⃗⃗  is given by- 

                                                                  τ =  i A B sin θ                                                       …..(7) 

Here, A is the area of the current loop. 

If there are N current loops in a bar magnet, then the torque acting on the entire magnet is- 

                                                                 τ = N i A B sin θ                                                    …..(8) 

You have read that the quantity N i A is defined as the magnitude of the magnetic dipole moment 

M⃗⃗⃗  of all the N current loops or of the bar magnet i.e.  

                                                                       M =Ni A                                                          …..(9) 

Therefore, equation (8) takes the form as- 

                                                                       τ = M B sin θ                                                …..(10) 

Here θ is the angle between the vectors M⃗⃗⃗  and B⃗⃗ . In vector, the above expression (10) can be 

written as- 

τ  = M⃗⃗⃗ × B⃗⃗                                                       …..(11) 

The magnetic moment M⃗⃗⃗  is directed along the axis of the bar magnet. 
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We can compare this torque with the torque exerted by an electric field (E⃗⃗ ) on an electric dipole 

which is given as- 

τ  = p⃗ × E⃗⃗                                                          …..(12) 

Here p⃗  is the electric dipole moment. 

There is a difference between these two torques. The torque on a magnetic dipole situated in a 

magnetic field is an independent physical quantity. One cannot suppose that it is made up of two 

parallel, equal and opposite forces acting on the magnetic poles. But on the other hand, the 

torque on an electric dipole is made of two parallel, equal and opposite forces acting on the 

electric charges of the dipole. 

If the axis of the magnetic dipole be perpendicular to the magnetic fieldB⃗⃗ , then the torque exerted 

on it will be maximum. Thus, 

                                                         τmax = M B sin 900 

                                                                = M B                                                                   …..(13) 

Or                                                    M = τmax/ B 

If B = 1 (unit), then M = τmax 

Thus, the magnetic moment of a magnetic dipole is equal to the torque acting on the dipole if it is 

placed perpendicular to a uniform unit magnetic field. 

The SI unit of magnetic dipole moment is Joule/Tesla or ampere-meter2.  

9.5 POTENTIAL ENERGY STORED OF A MAGNETIC DIPOLE 

You have read that if a magnetic dipole (bar magnet, current loop etc.) is placed in an external 

uniform magnetic field, then it is acted upon by a torque which tends to align the magnetic dipole 

in the direction of the magnetic field. Therefore, work must be done to change the orientation of 

the magnetic dipole against the torque. It means that the magnetic dipole has magnetic potential 

energy depending on its orientation in the magnetic field. Let us evaluate this energy. 

Let us consider a magnetic dipole of magnetic dipole moment M⃗⃗⃗  placed at an angle θ with the 

direction of a uniform magnetic fieldB⃗⃗ . Then, the magnitude of the torque exerted on the 

magnetic dipole is given as- 

                                                               τ = M B sin θ                                                         …..(14) 

Now, let the magnetic dipole is rotated through an infinitesimally small angle dθ against the 

torque, then the amount of work done for this act- 
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                                                                dW = τ dθ                                                        …..(15) 

Putting for τ from equation (14) into equation (15), we get- 

                                                               dW = (M B sin θ) dθ                                           …..(16) 

If the magnetic dipole is rotated from an initial orientation θ1 to a final orientation θ2, then the 

total work needed will be- 

                                                              W = ∫ dW
θ2

θ1
 

                    = ∫ (M B sin θ)dθ
θ2

θ1
 

                               = MB ∫ (sin θ)dθ
θ2

θ1
 = MB [– cos θ]

θ1

θ2
 

                                                                   = - MB (cosθ2 − cosθ1) 

Or                                                         W = MB (cosθ1 − cosθ2)                                    …..(17) 

This work is stored in the form of potential energy U of the dipole in the new orientation θ2. 

Therefore, 

                                                                 U = MB (cosθ1 − cosθ2)                                  …..(18) 

Now let us assume the potential energy of the magnetic dipole to be zero for its any arbitrary 

orientation. Let us suppose potential energy U is equal to zero when the axis of the dipole makes 

an angle θ = 900 with the direction of magnetic field. Thus, taking θ1 = 900 and θ2 = θ, then the 

expression (18) becomes- 

                                                               Uθ = MB (cos900 − cosθ) 

                                                                     = MB (0 − cosθ) 

Or                                                           Uθ = - MB cosθ                                                   …..(19) 

In vector notation,                                  U = - M⃗⃗⃗  . B⃗⃗ …..(20 a) 

If θ = 00, then the potential energy of dipole Uθ = - MB cos00 

Or U0= -M B 

This is the minimum potential energy that a magnetic dipole can have. Thus, you see that a 

magnetic dipole has minimum potential energy when M⃗⃗⃗  and B⃗⃗  are parallel. 

When θ = 1800, then the potential energy of dipole U180 = - MB cos1800 
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                                   = M B 

This is the maximum potential energy that a magnetic dipole can have. In this way, you see that a 

magnetic dipole has maximum potential energy when M⃗⃗⃗  and B⃗⃗  are antiparallel. 

The difference in energy between these two orientations is given as- 

                                                         Δ U = U180 - U0 

                                                                = M B – (- MB) 

                                                               = 2 MB 

This much work must be done by an external agent to turn a magnetic dipole through 1800, 

starting when it is lined up with the magnetic field. 

Example 1: A current of 6 Amp is flowing in a plane circular coil of radius 2 cm having 200 

turns. The coil is placed in a uniform magnetic field of 0.2 Wb/meter2. If the coil is free to rotate, 

what orientations would correspond to its (a) stable equilibrium, (b) unstable equilibrium? 

Calculate the potential energy of the coil in these two cases. 

Solution: Given, i = 6 Amp, r = 2 cm = 0.02 meter, N = 200, B = 0.2 Wb/meter2 

The area of coil A = π r2 = 3.14 × (0.02)2 = 0.001256 = 1.256 × 10-3 meter2 

The magnetic moment of the coil, M =N i A 

                                                            = 200 × 6 × 1.256 × 10-3 

                                                             = 1507.2 × 10-3 = 1.5072 Amp-meter2 

The potential energy of the coil when placed in a uniform magnetic field is given by- 

Uθ = - MB cosθ    

(a) In the case of stable equilibrium, the coil will orient itself so as to have a minimum (i.e. 

maximum negative) potential energy and this corresponds to θ = 00 i.e. the axis of the coil will be 

parallel to the magnetic field i.e. M⃗⃗⃗   parallel to B⃗⃗  . In this case, the potential energy will be- 

U0 = - MB cos00 

= - M B  

                                                                    = - 1.5072 × 0.2 = - 0.30144 Joule  
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(b) In the case of unstable equilibrium, the coil will have maximum potential energy. This will be 

so when θ = 1800 i.e. M⃗⃗⃗    anti- parallel to B⃗⃗ . The potential energy will be- 

                                                              U180 = - MB cos1800 = M B 

                                                                      = 0.30144 Joule 

Example 2:A short bar magnetof magnetic moment 0.50 Joule/Tesla is held with its axis at 300 

with a uniform external magnetic field of 0.15 Tesla. Find the magnitude of the torque exerted on 

the magnet by the magnetic field. 

Solution: Given, M = 0.50 Joule/Tesla, θ = 300, B = 0.15 Tesla 

The torque exerted on the bar magnet- 

                                                            τ =  M B sin θ 

                                                                = 0.50 × 0.15 × sin 300 

                                                               = 0.50 × 0.15 × 0.50 = 0.0375 Joule 

Self Assessment Question (SAQ) 1: When is the magnetic dipole in stable and unstable 

equilibrium? 

Self Assessment Question (SAQ) 2: A bar magnet of magnetic moment 1.5 Joule/Tesla is set 

aligned with the direction of a uniform magnetic field of 0.22 Tesla. 

(a) Compute the work required to turn the magnet so as to align its magnetic moment (i) 

normal to the magnetic field and (ii) opposite to the magnetic field direction. 

(b) Also find the torques on the bar magnet in the two cases. 

Self Assessment Question (SAQ) 3:A couple of moment 1.5 × 10-5 Newton-meter is needed to 

keep a magnetic dipole perpendicular to a magnetic field of 6 × 10-4 Wb/meter2. Evaluate the 

magnetic moment of the dipole. 

Self Assessment Question (SAQ) 4: Choose the correct option- 

The SI unit of magnetic dipole moment is- 

(a) Amp-meter2      (b) Amp/meter            (c) Tesla meter/Amp           (d) none of these 
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9.6 BALLISTIC GALVANOMETER 

It is also known as moving coil ballistic galvanometer. Moving coil ballistic galvanometer is a 

specially designed galvanometer for the measurement of the total quantity of charge passed 

through it for a short duration. The ordinary galvanometer measures current. 

A moving coil ballistic galvanometer consists of a coil of large moment of inertia and large 

number of turns of insulated fine copper wire wound on a non-conducting frame such as bamboo 

or ivory. The coil is suspended by means of a thin phosphor bronze strip between the cylindrical 

pole pieces of a permanent magnet. The lower end of it is attached to a spring of phosphor-

bronze wire. A concave mirror is rigidly attached to the phosphor-bronze strip to record the 

deflection of the coil by a lamp and scale arrangement. A soft iron core is kept symmetrically 

within the coil without touching it. The whole arrangement is enclosed in a metallic case 

provided with a glass window on the front side and leveling screws at the base. 
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                                                                     Figure 2 
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Since the suspension is thin, long and in the form of a strip, therefore the torsional constant C is 

small. You know that the period of oscillation of a moving coil ballistic galvanometer is given 

by- 

T = 2π√
I

C
                                                                             …..(20 b) 

Since the coil has a large moment of inertia I and its suspension has small torsional constant C, 

therefore, its period of oscillation [as given by equation (20)] is quite large.  Further, as the coil 

is wound on a non-conducting frame, its electromagnetic damping is reduced. The damping due 

to viscosity of air is still present, but it is usually small. Now let us discuss the theory of a 

moving coil ballistic galvanometer. 

Theory 

Let i be the electric current flowing in the coil at any moment as shown in figure 2. Let N be the 

number of turns in the coil, l the length of its each vertical side, b its breadth and B the strength 

of the radial magnetic field in which the coil is suspended. 

The magnitude of the mechanical force acting on each of the two vertical sides PS and QR at that 

moment = N i B l sin 900 = N i  B l 

The force acting on the sides PQ and SR = N i B l sin 00 0 

i.e. the force acting on the sides PQ and SR will be zero because these sides are parallel to the 

magnetic field. 

According to Fleming’s left hand rule, the forces acting on the vertical sides PS and QR are 

opposite and perpendicular to the plane of the coil. The magnitudes of these forces are equal. 

These equal and opposite forces form a couple.  

The moment of this couple = magnitude of force × perpendicular distance between the line of                 

action of the forces 

                                              = (NiBl)× b = N i B (l × b) 

                                              = N i B A                                 

(since l × b = A, the area of the coil) 

Let us consider that this couple acts on the coil for an infinitesimal time dt, then the angular 

impulse given to the coil = couple × time = N i B A × dt 

Therefore, the total angular impulse given to the coil in time t = ∫ (N i B A) dt
t

0
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                                                                = N B A ∫ i dt
t

0
 = N B A q                                  …..(21) 

Since ∫ i dt
t

0
 = q, the total charge that has passed through the moving coil galvanometer in time t. 

This impulse produces an angular momentum in the coil due to which the coil rotates. 

Let ω0 is the initial angular velocity of the coil and I, the moment of inertia of the coil about the 

axis of rotation.  

The angular momentum produced in the coil due to the angular impulse = I ω0               …..(22) 

From equations (21) and (22), we have- 

                                                                           N B A q = I ω0                                         …..(23) 

When the coil rotates due to the angular momentum and therefore, the suspension wire twists due 

to which a restoring couple is developed in the suspension. The restoring couple of suspension 

brings the coil to the position of rest momentarily. Then the coil swings back to its mean position 

as the suspension unwinds and due to its inertia, the coil does not come to the rest in its mean 

position but moves in opposite direction. Therefore, the suspension wire twists in opposite 

direction and again a restoring couple is developed in the coil which tends to bring the coil to its 

mean position. The process continues and thus the coil oscillates in the horizontal plane about the 

axis of suspension. 

Evidently, the kinetic energy of the coil at start is 
1

2
Iω0

2. At the moment when the coil comes to 

the position of rest momentarily, the angle of rotation θm is maximum and the kinetic energy of 

the coil is zero. If the damping is negligible then the energy is entirely used for doing work in 

twisting the suspension against the restoring couple. 

Let C be the restoring couple per unit twist in the suspension, then the couple for a twist θ =  C θ 

Therefore, the work done for an additional small twist = (C θ) dθ 

The work done against the restoring couple = ∫ (C θ) dθ
θm

0
 

                                                                       = C ∫ θ dθ = 
θm

0

1

2
Cθm

2  

Therefore,                               
1

2
Iω0

2 = 
1

2
Cθm

2  

Or                                                                 ω0 = θm√
C

I
.....(24) 

Now, putting for ω0 from equation (23) in equation (24), we get- 
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                                                   N B A q / I =  θm√
C

I
 

Or                                               q =  
C

NBA
√

I

C
θm                                                               …..(25) 

The time period of the moving system- 

T = 2π√
I

C
 

Or                                                  √
I

C
 = 

T

2π
                                                                       …..(26) 

Putting for √
I

C
 from equation (26) in equation (25), we get- 

                                                          q =  
C

NBA

T

2π
 θm                                                         …..(27) 

This is the relation between the charge q flowing through the ballistic galvanometer and the 

maximum throw θm of the coil. 

The equation (27) can be written as- 

                                                          q =  K θm                                                                …..(28) 

where                                              K = 
C

NBA

T

2π
                                                                …..(29) 

Here K is known as ballistic constant of the moving coil galvanometer. 

Obviously,                                             q α θ0                                                                  …..(30) 

Thus, when momentary current is passed through the ballistic galvanometer, the total charge 

passed through the galvanometer is proportional to the maximum angular deflection θm of the 

coil. 

The quantity 
θm

q
 is called charge sensitivity Qs  i.e. the charge sensitivity of the ballistic 

galvanometer is defined as the deflection per unit charge i.e. 

                                              Charge sensitivity = 
deflection

charge
 

Thus,                                                   Qs =
θm

q
  = 

NBA

C

2π

T
                                                   …..(31) 
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The current sensitivity of a moving coil ballistic galvanometer is defined as the deflection, as 

read from the scale per unit current i.e. 

                                          Current sensitivity = 
deflection

current
 

Thus, Current sensitivity I s = 
𝜃

𝑖
 = 

NBA

C
                                                      …..(32) 

Obviously,             charge sensitivity = 
2π

T
× current sensitivity 

Hence, the charge sensitivity of a moving coil ballistic galvanometer is 
2π

T
  times the current 

sensitivity. 

Voltage sensitivity under any given conditions is the deflection per unit voltage and is 

consequently, current sensitivity divided by the resistance i.e. 

                                        Voltage sensitivity = 
current sensitivity

resistance
 

The resistance is that of entire circuit and not that of the instrument alone. 

Figure of merit of ballistic galvanometer is the current which will produce a deflection of one 

scale division, when we use lamp and scale arrangement, it is the current which will produce a 

deflection of 1 mm on a metre scale one metre away from the galvanometer mirror. 

For equilibrium,                 deflecting couple = restoring couple 

C

NBA
  N i  A B = C θ 

9.6.1 Correction for Damping 

While deriving the above relations, we have assumed that the damping in the coil is zero and the 

entire energy of the coil is used for twisting the suspension through an angle θm. But in fact, the 

deflection of the coil goes on decreasing due to the damping produced by viscosity of the air and 

the electromagnetic damping produced by the motion of the coil in the magnetic field of the 

permanent magnet (Figure 3). Therefore, when charge is passed through the ballistic 

galvanometer, you observe that the throw of the coil is smaller than its true value θm which 

would have been observed if the damping were entirely absent. Thus, a correction is necessary. 

Let θ1, θ2, θ3, θ4 ………… etc. be the first, second, third, fourth, …… etc. successive throws in 

continuously decreasing order on either sides of the rest position of the coil θ1, θ3, …… are on 

one side of the rest position of the coil and θ2, θ4, ………are on the other side of the rest position 

of the coil. It is found that the ratio of any two successive throws is constant i.e. 
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θ1

θ2
 = 

θ2

θ3
 = 

θ3

θ4
 = …….. = d = eλ                                               …..(33) 

 

Here d is a constant and its logarithm to the base e i.e. loge d is called the logarithmic decrement 

per half cycle and is represented by λ i.e. 

 

                          θm 

                          θ1 

 

             θ                                                         θ3 

 

                         O T                                 2T 

 

 

                                          θ4 

 θ2 

 t 

 

 

                                                                                       Figure 3 

 

                                                                loge d = λ  

or                                                                  d = eλ 

The decrement in a complete cycle is given as- 

θ1

θ3
 = 

θ1

θ2

θ2

θ3
  = e2λ 
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Obviously, the logarithmic decrement in a quarter cycle will be λ/2. To calculate the true value 

of the throw θm in the presence of damping, throw θ, is observed after the coil completes a 

quarter of a vibration. Therefore, the decrement is given by- 

θm

θ1
 = eλ/2 

Or                                           θm = θ1e
λ/2 = θ1 [1 + 

𝜆

2
 + 

(
𝜆

2
)
2

2!
 + 

(
𝜆

3
)
3

3!
 + ………..] 

As λ is small, the terms containing λ2, λ3 etc. may be neglected, therefore- 

                                                         θm= θ1 (1 + λ/2)                                                     …..(34) 

Putting for θ0 in equation (27), we get- 

q =  
C

NBA

T

2π
θ1 (1 + λ/2)                                         …..(35) 

This is the relation between the charge passed through the galvanometer and the first throw 

observed. 

In actual practice, the value of λ is found by observing first throw θ1 and eleventh throw θ11. 

θ1

θ11
 = 

θ1

θ2

θ2

θ3

θ3

θ4

θ4

θ5

θ5

θ6

θ6

θ7

θ7

θ8

θ8

θ9

θ9

θ10

θ10

θ11
  = e10λ 

Or                                                        10 λ = loge
θ1

θ11
 

Or                                                        λ = 
1

10
loge

θ1

θ11
 

                            = 
2.3026

10
log10

θ1

θ11
                     …..(36) 

 

9.6.2 Conditions for a Moving Coil Galvanometer to be Ballistic 

A moving coil galvanometer is said to be ballistic if its coil makes a large number of oscillations 

before coming to rest, after the entire charge passes through it. The conditions for a moving coil 

galvanometer to be ballistic are as follows- 

(i) The period of oscillation should be large. This is possible if moment of inertia (I) of 

the coil is large and torsional rigidity (C) of suspension is small. 

(ii) The damping is kept least. This can be achieved by winding the coil on a non-

conducting frame. 
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9.6.3 Conditions for a Moving Coil Galvanometer to be Dead Beat 

A moving coil galvanometer is said to be dead beat if its coil returns to its rest position quickly 

without making any oscillation, after being deflected. The conditions for a moving coil 

galvanometer to be dead beat are given below- 

(i) The period of oscillation should be small. This is possible if moment of inertia (I) of 

the coil is small and torsional rigidity (C) of suspension is large. 

(ii) The damping is kept large. This can be achieved by winding the coil on a conducting 

frame and a soft iron core is kept between the pole pieces of permanent magnet. 

9.7 SUMMARY 

In this unit, you have learnt about torque acting on a bar magnet in a uniform magnetic field, 

magnetic dipole and potential energy stored of a magnetic dipole. You have learnt that a current 

carrying solenoid or a coil or a current loop behaves like a bar magnet. A bar magnet having 

north and south poles at its ends is a magnetic dipole and therefore, a current loop is also a 

magnetic dipole. Expressions for torque acting on a bar magnet, energy stored in a magnetic field 

and ballistic constant have been established. You have studied about correction for damping and 

the reason for this correction. You have also studied the conditions for a moving coil 

galvanometer to be ballistic and dead beat. You have also learnt about current sensitivity, charge 

sensitivity and voltage sensitivity of ballistic galvanometer. To present the clear understanding 

and to make the concepts of the unit clear, many solved examples are given in the unit. To check 

your progress, self-assessment questions (SAQs) are given place to place. 

9.8 GLOSSARY  

Magnetized – pulled towards you, caught the attention of 

Aligned- brought into line 

Electromagnetic damping- Damping due to induced currents in the moving system during its 

motion in the permanent magnetic field 

Angular impulse- the time integral of the torque applied to a system, usually when applied for a 

short time 

9.9 TERMINAL QUESTIONS 

1. Explain magnetic dipole moment of a bar magnet. 

2. Obtain an expression for the torque acting on a magnetic dipole (bar magnet) placed in a    

uniform magnetic field. Give its unit. 

3. What is the difference between the torque acting on a magnetic dipole and an electric dipole? 
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4. Prove that the potential energy of a magnetic dipole in a uniform magnetic field is given by- 

U = - M⃗⃗⃗  . B⃗⃗  

    where symbols have their usual meanings. 

5. Give an example of magnetic dipole. 

6. Why is a current loop considered a magnetic dipole? 

7. In hydrogen atom, the electron revolves round the nucleus 6.1 × 1012 times per second in an 

orbit of radius 0.53 A0. Estimate its equivalent magnetic moment. 

8. A bar magnet of magnetic moment 0.8 Joule/Tesla placed with its axis at 450 with a uniform 

external magnetic field experiences a torque of magnitude 0.062 Joule. Find the strength of 

the magnetic field. 

9.  Describe the theory of a moving coil galvanometer. Establish the expression for ballistic 

constant of the galvanometer. 

10. Why is a correction for damping of a moving coil galvanometer? 

11. What are the conditions that a moving coil galvanometer is ballistic? 

12. Prove that the total charge passed through the galvanometer is directly proportional to the 

maximum angular deflection of the coil, on passing the momentary current through the 

ballistic galvanometer 

13. Explain- 

      (i) Current sensitivity of a ballistic galvanometer 

     (ii) Charge sensitivity of a ballistic galvanometer 

    (iii) Voltage sensitivity of ballistic galvanometer 

9.10 ANSWERS 

Self Assessment Questions (SAQs): 

1. A magnetic dipole is in stable equilibrium when M⃗⃗⃗  is parallel to �⃗�  and in unstable equilibrium 

when anti-parallel. 

2. Given, M = 1.5 Joule/Tesla, B = 0.22 Tesla  

(a) The potential energy of a magnet of magnet moment M⃗⃗⃗  placed in a magnetic field B⃗⃗  is given 

by- 
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                                                             Uθ = - MB cosθ      

The potential energies when θ = 00, θ = 900 and θ = 1800 are respectively- 

                                                               U0 = - MB cos00 = - MB    

                                                               U90
0 = - MB cos900 = 0           

and                                                         U180
0 = - MB cos1800 = -MB (-1) = + M B  

Therefore, the work required in case (i) is- 

                                                              W =   U90
0 - U0 = 0 – (-M B)  

                                                                   = + MB 

                                                                   = 1.5 × 0.22 

                                                                   = 0.33 Joule 

In case (ii), the work required is- 

                                                            W = U180
0 -   U0 

                                                                =   M B -  (-M B) 

                                                               = 2 M B = 2 × 1.5 × 0.22 = 0.66 Joule  

(b) The torque in case (i) is- 

                                                          τ = M B sin θ     

                                                            =    1.5 × 0.22 ×sin 900 

                                                            = 0.33 Newton-meter 

And that in case (ii) is- 

τ = M B sin θ     

                                                           = 1.5 × 0.22 × sin 1800 = 0 

3.  Given, τ = 1.5 × 10-5 Newton-meter, B = 6 × 10-4 Wb/meter2, θ = 900 

We know that- 

                                                    τ = M B sin θ     

or                                               M = 
τ

Bsin θ
 = 

1.5×10−5

6×10−4×sin900 
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                                                       = 0.25× 10-1 = 0.025 Amp-meter2 

4. (a) Amp-meter2 

Terminal Questions: 

5. A bar magnet having north and south poles 

6. A bar magnet (which is a magnetic dipole) suspended in a uniform magnetic field experiences 

a torque and therefore, it sets with its axis parallel to the magnetic field. A current loop also 

experiences a torque in a magnetic field due to which it sets with its axis parallel to the 

magnetic field. 

7. Given radius of the orbit = 0.53 A0 = 0.53 × 10-10 meter, No. of revolutions per second = 6.1 × 

1012 

The electron revolving in an orbit is equivalent to a current loop. The magnitude of the current 

is- 

                         i = charge passing per second through any point in the orbit 

                           = charge on electron × number of revolutions per second 

                          = (1.6 × 10-19 coulomb) × (6.1 × 1012 /sec) 

                          = 9.76 × 10-7 Amp 

The magnetic moment of the equivalent current loop is- 

                                           M = N i A 

Here N is the number of turns and A is the area of the loop. Here N = 1, i = 9.76 × 10-7 Amp, A = 

area of the loop = π r2 = 3.14 × (0.53 × 10-10)2 = 0.882 × 10-20 meter2 

Therefore, M = 1 × 9.76 × 10-7 × 0.882 × 10-20 = 8.608 × 10-27 Amp-meter2 

8. Given, M = 0.8 Joule/Tesla, θ = 450, τ = 0.062 Joule  

We know that- 

                                                          τ = M B sinθ 

or                                                  B = 
τ

Msin θ
 = 

0.062

0.8×sin450   = 1.095 Tesla 
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10.1 INTRODUCTION 

In the previous unit, you have learnt about torque acting on a bar magnet in a uniform magnetic 

field, magnetic dipole, energy stored for a dipole in a magnetic field and ballistic galvanometer. 

The magnetic properties of a substance are explained in terms of tiny current loops within the 

substance. These current loops occur due to motion of electrons within atom. You know that an 

atom consists of positively charged nucleus, surrounded by a cloud of electrons. These electrons 

circulate about the nucleus in definite orbits and also spin about their own axes. These moving 

electrons are equivalent to tiny current loops and produce magnetic fields. In an unmagnetised 

material, the current loops are oriented randomly; therefore, the magnetic fields produced by 

them are cancelled. The magnetization process consists of aligning these loops such that the 

magnetic moment produced by them is parallel to the magnetizing field and hence a resultant 

magnetic field is created. Whenever any material is placed in a magnetic field, the elementary 

current loops tend to get aligned parallel or antiparallel to field direction and the material is said 

to be magnetized. The magnetic field at any point is the resultant of the original magnetic field 

and the field set up due to alignment of current loops. In the present unit, you will learn about 

flux density in a magnetic material and some important terms used in magnetism such as 

magnetic induction, intensity of magnetization, magnetic intensity etc. You will also study the 

classification of magnetic materials on the basis of relative magnetic permeability. 

10.2 OBJECTIVES 

After studying this unit, you should be able to- 

 understand magnetic induction 

 understand Intensity of magnetization 

 calculate the magnetic intensity 

10.3 MAGNETIC INDUCTION 

You know that when a piece of any substance is placed in an external magnetic field, the 

substance becomes magnetized. The magnetism produced in this way in the substance is called 

induced magnetism and this phenomenon is called magnetic induction. 

Let us consider an iron bar placed in a uniform magnetic field with its length parallel to the 

magnetic lines of force as shown in figure (1). The bar is magnetized by induction, with a south 

pole induced on the left end where lines of force enter the bar and a north pole induced on the 

right end where lines of force leave the bar. The magnetized bar produces its own magnetic field. 

Its lines of force are in the same direction as those of the original magnetic field inside the bar 

but in opposite direction outside the bar. This results in a concentration of the lines of force 
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within the bar as shown in figure (2). The magnetic flux density within the bar is increased 

whereas it becomes quite weak at certain places outside the bar. 

The magnetic lines of force inside the magnetized bar are called magnetic lines of induction. 

 

 

 

 

 S N 

 

 

 

 

 Figure 1 

The number of magnetic lines of induction inside a magnetized substance crossing unit area 

normal to their direction is called the magnitude of magnetic induction or magnetic flux density 

inside the substance. It is represented by B. Magnetic induction is a vector quantity whose 

direction at any point is the direction of magnetic line of induction at that point.  
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In vector form, it is written as B⃗⃗ . The SI unit of magnetic induction is Tesla (T) or Weber/meter2 

(Wb/m2) or Newton/ (amp-meter). Gauss is the CGS unit of magnetic induction. 

10.4 INTENSITY OF MAGNETIZATION 

The intensity of magnetization of a magnetized substance represents the extent to which the 

substance is magnetized. It is also known as simply magnetization. 

It is defined as the magnetic moment (μM) per unit volume of the magnetized substance. It is 

denoted by M. Therefore, 

           M= 
μM

V
   …..(1) 

It is also vector. In vector form, intensity of magnetization is written as M⃗⃗⃗ .The SI unit of 

intensity of magnetization is ampere/meter.  

In case of bar magnet, if m be the pole-strength of the magnet, 2l its magnetic length and A its 

area of cross-section, then- 

                               M = 
μM

V
 = 

m×2𝑙

A×2𝑙
 

                                                                            = 
m

A
                                                              …..(2) 

Thus, magnetization may also be defined as pole strength per unit area of cross-section. 

10.5 MAGNETIC INTENSITY 

Magnetic intensity is also known as magnetic field strength. When a substance is placed in an 

external magnetic field, it becomes magnetized. The actual magnetic field inside the substance is 

the sum of the external magnetic field and the field due to its magnetization. The ability of the 

magnetizing field to magnetize the substance is expressed by means of a vector H⃗⃗ , called the 

magnetic intensity of the field. 

The magnetic intensity is defined through the vector relation- 

H⃗⃗  = 
B⃗⃗ 

μ0

 - M⃗⃗⃗                                                              …..(3) 

where B⃗⃗  is the magnetic field induction inside the substance and M⃗⃗⃗  is the intensity of 

magnetization. μ0 is the permeability of free space. 

The SI unit of H⃗⃗  is same as of M⃗⃗⃗  which is ampere/meter. Oersted is the CGS unit of magnetic 

intensity. 
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10.6 MAGNETIC PERMEABILITY 

It is denoted by μ. The magnetic permeability of a substance is a measure of its conduction of 

magnetic lines of force through it.  

The magnetic permeability is defined as the ratio of the magnetic induction B⃗⃗  inside the 

magnetized substance to the magnetic intensity H⃗⃗  of the magnetizing field, i.e. 

                                                                    μ = 
B⃗⃗ 

H⃗⃗ 
                                                                  …..(4) 

Numerically, it is written as-                      μ = 
B

H
                                                                  …..(5) 

Its SI unit is Weber/ (ampere-meter) or Newton/ampere2. 

10.7 RELATIVE MAGNETIC PERMEABILITY 

The relative magnetic permeability of a substance is the ratio of the magnetic permeability μ of 

the substance to the permeability of free space μ0, i.e. 

                                                              μr = 
μ

μ0

                                                                    …..(6) 

It is a dimensionless quantity. It is equal to 1 for vacuum. 

The relative permeability of a substance is also defined as the ratio of the magnetic flux density 

B in the substance when placed in a magnetic field and the flux density B0 in vacuum in the same 

field i.e. 

                                                              μr = 
B

B0
                                                                    …..(7) 

Now we can classify the substances in terms of μr as- 

                                          μr< 1                diamagnetic 

                                          μr> 1               paramagnetic 

                                          μr>> 1             ferromagnetic 

 

10.8 RELATION BETWEEN B, H AND M 

Let us consider the material in the form of a Rowland ring having a toroidal winding of N turns 

around it. When a current i is passed through the winding, the material ring is magnetized along 

its circumferential length. The current i is the real current which magnetizes the ring. 
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Figure (3) shows the section of the magnetized ring. The small circles represent the current 

loops. Now except at the periphery i.e. outer circle, every portion of each loop is adjacent to 

another loop in which the current at the point of contact is in opposite direction. Hence net 

current inside is zero. 
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The current in the outer loop remains uncancelled. Thus the whole network of electronic currents 

within the material can be replaced by a current is circulating around the surface of the ring. This 

current is called Amperian surface current. 

Let A be the cross-sectional area and l the circumferential length of the ring. 

The volume of the ring = A l 

This ring behaves as a large dipole of magnetic moment is A. 

Therefore, the magnetization = 
Magnetic moment

Volume
 = 

isA

Al
 

                                                                            = 
𝑖𝑠

𝑙
   = M                                          …..(8) 

Thus, the magnetization equals the Amperian surface current per unit length. This is also known 

as magnetizing current. 

Now, the magnetic flux density B within the material of the ring arises due to free current i and 

due to Amperian surface current is. 

Therefore,                                           B = μ0 (
𝑁 𝑖

𝑙
+ 

𝑖𝑠

𝑙
)                                                          …..(9) 

Putting  
is

l
   = M   from equation (8) in equation (9), we get- 

                                                              B = μ0 (
𝑁𝑖

𝑙
+  M) 

Or                                                            
B

μ0

−  M = 
𝑁 𝑖

𝑙
                                                          …..(10) 

The quantity (
B

μ0

−  M) is of significance in magnetism and is known as magnetic intensity or 

magnetic field intensity (H). 

Therefore,                                        H = 
B

μ0

−  M 

Or                                                    B = μ0 (H + M)                                                             …..(11) 

Since B, M and H are vectors, therefore, in vector forms- 

B⃗⃗  = μ0(H⃗⃗ + M⃗⃗⃗ )                                                            …..(12) 

and                                                   H⃗⃗  = 
N i

𝑙
 = n i 

where n is the number of turns per unit length. 
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In this way, the value of H depends only on the free current I and is independent of the material. 

If the Rowland ring is empty, then M⃗⃗⃗  = 0. The flux density in vacuum is – 

B0
⃗⃗⃗⃗  = μ0H⃗⃗                                                                  …..(13) 

The equation (12) is the relation between three magnetic vectors B⃗⃗  , H⃗⃗  and M⃗⃗⃗ . 

Example 1:The horizontal component of the flux density of the earth’s magnetic field is 1.7 × 

10-5 Wb/meter2. What is the horizontal component of the magnetic intensity? 

Solution: Given B0 = 1.7 × 10-5 Wb/meter2, μ0 = 1.26 × 10-6 H/m 

We know that- 

                                                             B = μ0 H 

Or                                                        H = 
B

μ0

 = 
1.7 ×10−5

1.26×10−6 = 13.5 Ampere/meter 

Example 2: A bar magnet has a coercivity of 4 × 103 Amp/meter. It is desired to demagnetise it 

by inserting it inside a solenoid 12 cm long and having 60 turns. What current should be sent 

through the solenoid? 

Solution: The bar magnet requires a magnetic intensity H = 4 × 103 Amp/meter to become 

demagnetised.  

                                n = number of turns per unit length = 60/ (12×10-2) = 500 

Let i be the current carried by the solenoid to produce the magnetic intensity, then- 

                                                 H = n i = (N/l) i  

Or                                              i = H / n = 4 × 103/500 = 8 Amp 

Self Assessment Question (SAQ) 1:A current of 2 Amp is passed through a winding of 20 turns 

per cm. If the magnetic induction is 1.2 Wb/meter2, calculate the intensity of magnetic field and 

the intensity of magnetization. 

Self Assessment Question (SAQ) 2:Choose the correct option- 

The unit of intensity of magnetization is- 

(a) Amp/meter2        (b) weber/meter2        (c) Amp/meter        (d) Amp× meter 

Self Assessment Question (SAQ) 3:Choose the correct option- 

The relationship between three magnetic vectors is- 
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(a) B = μ0 (H + M)    (b)  H = 
B

μ0

+  M          (c) H = 
B

μ0

×  M      (d) none of these 

Self Assessment Question (SAQ) 4:Choose the correct option- 

The magnetic permeability of a substance is a measure of - 

(a) its conduction of magnetic lines of force through it  

(b) its conduction of electric lines of force through it       

 (c) its conduction of electricity through it  

 (d) none of these 

Self Assessment Question (SAQ) 5:Choose the correct option- 

The magnetic permeability of vacuum, in SI units, is- 

(a) 1                         (b) infinite                        (c)  zero                   (d) 4π×10-7 

Self Assessment Question (SAQ) 6:Choose the correct option- 

Magnetism in substances is caused by- 

(a) orbital motion of electrons only           (b) spin motion of electrons only 

(c) due to spin and orbital motion of electrons both    (d) none of these 

10.9 SUMMARY 

In this unit, you have learnt about magnetic induction, intensity of magnetization, magnetic 

intensity, magnetic permeability and relative magnetic permeability. The intensity of 

magnetization of a magnetized substance represents the extent to which the substance is 

magnetized. It is also known as simply magnetization. It is defined as the magnetic moment (μM) 

per unit volume of the magnetized substance. You have also defined the magnetic intensity 

which is also known as magnetic field strength. When a substance is placed in an external 

magnetic field, it becomes magnetized. The magnetic permeability is defined as the ratio of the 

magnetic induction B⃗⃗  inside the magnetized substance to the magnetic intensity H⃗⃗  of the 

magnetizing field. You have also classified the magnetic materials on the basis of relative 

magnetic permeability. In the present unit, you have established the relation between three 

magnetic vectors as B⃗⃗  = μ0(H⃗⃗ + M⃗⃗⃗ ). To present the clear understanding of the unit, solved 

examples are given in the unit. To check your progress, self-assessment questions (SAQs) are 

given in the unit. 
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10.10 GLOSSARY  

Magnetic- attractive, compelling 

Magnetic field-the region surrounding a magnet in which the force of the magnet can be detected 

Induction- brining on, stimulation, initiation 

10.11 TERMINAL QUESTIONS 

1. Define magnetic induction and intensity of magnetization. 

2. Write notes on- 

     (a)   Magnetic Intensity       (b) Magnetic Permeability      (c) Relative Magnetic Permeability 

3. Establish the relation among three magnetic vectors- 

B⃗⃗  = μ0(H⃗⃗ + M⃗⃗⃗ ) 

4. An iron rod of volume 10-4 meter3 and relative permeability 1000 is placed inside a long 

solenoid wound with 5 turns per cm. If a current of 0.5 Amp is passed through the solenoid, 

find the magnetic moment of the rod. 

5. A material core has 1000 turns/meter of wire wound uniformly upon it which carries a current 

of 2 Amp. The flux density in the material is 1 Wb/meter2. Calculate the magnetizing force 

and magnetization of the material. What would be the relative permeability of the core? (μ0 = 

4π×10-7 Wb/Amp-meter 

10.12 ANSWERS 

Self Assessment Questions (SAQs): 

1. Given i = 0.2 Amp,  n = number of turns per unit length = 20 turns/cm = 20/(1×10-2) = 2000,  

B = 1.2 Wb/meter2 

We know-                                                

Intensity of magnetic field H = n i = 2000 × 0.2 = 400 Amp/meter 

Again we know-                                     H = 
B

μ0

−  M 

Or                                                             M = 
B

μ0

−  H = 
1.2

1.26×10−6 - 400 = 9.5 × 105 – 400 

                                                                     = 950000-400 = 949600 Amp/meter 
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2. (c) Amp/meter 

3. (a) B = μ0 (H + M)  

4. (a) its conduction of magnetic lines of force through it 

5. (d) 4π×10-7 

6. (c) due to spin and orbital motion of electrons both     

 

Terminal Questions: 

4. Given V = 10-4 meter3, μr = 1000, n = 5 turns/cm = 500 turns/meter, i = 0.5 Amp 

We know         H = n i  = 500×0.5 = 250 Amp/meter 

Again,                             B = μ H = (μr μ0) H                                            (since μr = 
μ

μ0

 ) 

                                                      = (1000×1.26 × 10-6)× 250 = 0.315 weber/meter2 

We know that-                                                B = μ0 (H + M) 

Or                                                                   M = 
B

μ0

−  H = 0.315/1.26 × 10-6 – 250 

                                                                             = 250×103 -250 = 2.49×105 Amp/meter 

 

Using                                                            M = 
μM

V
 

Or                                                                 μM = M × V = 2.49×105 × 10-4 = 24.9 Amp/meter2 

5. Given    n = 1000 turns/meter, i = 2 Amp, B = 1 Wb/meter2, μ0 = 4π×10-7 Wb/Amp-meter 

Magnetizing force H = n i  = 1000× 2 = 2000 Amp/meter 

We know that                               B = μ0 (H + M) 

Or             Magnetization        M = 
B

μ0

−  H = 
1

4𝜋×10−7 – 2000 = 7.94× 105 Amp/meter 

Relative permeability              μr = 
μ

μ0

 = 
B/H

μ0

 = 
B

μ0H
 = 

1

4𝜋×10−7×2000
 = 397 
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11.1 INTRODUCTION 

In the previous unit, you have learnt about magnetic induction, intensity of magnetization, 

magnetic intensity, magnetic permeability and relative magnetic permeability. In that unit, you 

have established the relation between three magnetic vectors as B⃗⃗  = μ0(H⃗⃗ + M⃗⃗⃗ ).You have also 

classified the magnetic materials on the basis of relative magnetic permeability. In the present 

unit, you will learn about magnetic susceptibility and establish the relation between relative 

permeability and magnetic susceptibility. In the unit, you will classify the substances according 

to their magnetic behaviour. You will also know that the magnetic susceptibility and the 

magnetic permeability of the substance are not constant but vary with magnetic field strength and 

also depend upon the past history of the substance and study the hysteresis and the uses of 

hysteresis curve.  

11.2 OBJECTIVES 

After studying this unit, you should be able to- 

 understand magnetic susceptibility 

 understand Curie’s law 

 understand the magnetic substances 

 understand hysteresis and calculate the energy loss due to hysteresis 

 know the applications of hysteresis curve 

11.3 MAGNETIC SUSCEPTIBILITY 

Magnetic susceptibility is a measure of how easily a substance is magnetized in a magnetizing 

field. For some types of magnetic materials like paramagnetic and diamagnetic substances, the 

magnetization (intensity of magnetization) M⃗⃗⃗  is directly proportional to the magnetic intensity H⃗⃗  

of the magnetizing field i.e. 

M⃗⃗⃗  α H⃗⃗  

Or                                                               M⃗⃗⃗  = χmH⃗⃗                                                          .....(1) 

where χm is a constant called the magnetic susceptibility of the substance. It may be defined as 

the ratio of the intensity of magnetization to the magnetic intensity of the magnetizing field i.e. 

     χm = 
M

H
                                                            .....(2)  

χm  is a pure number and is unit less. Its value for vacuum is zero as there can be no 

magnetization in vacuum. We can classify the substances in terms of χm as follows- 
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                                             χm = + ve,                              substance is paramagnetic 

                                               χm = -ve,                               substance is diamagnetic 

                                               χm = +ve and very large,      substance is ferromagnetic 

However, for them, the magnetization M⃗⃗⃗   is not accurately proportional to  H⃗⃗  and therefore, χm is 

not strictly constant. 

11.4 RELATION BETWEEN RELATIVE PERMEABILITY AND 

MAGNETIC SUSCEPTIBILITY 
You know that when a substance is kept in a magnetizing field, it becomes magnetized. The total 

magnetic flux density B within the substance is the flux density that would have been produced 

by the magnetizing field in vacuum plus the flux density due to the magnetization of the 

substance. If M be the intensity of magnetization of the substance, then, we know the relation ( in 

magnitude)- 

                                                              B = μ0 (H + M)                                                      .....(3) 

where H is the magnetic intensity. 

 

But                                                         χm = 
M

H
 

Or                                                         M = χm H 

Putting for M in the above expression (3), we get- 

                                                              B = μ0 (H +χm H )   

orB  = μ0 H (1+χm)                                                   .....(4)                                                           

Again we have                                      B = μH 

Now, substituting the value of B in equation (4), we get- 

μH = μ0 H (1+χm) 

or                                                          μ = μ0  (1+χm) 

or                                                          
μ

μ0

 = 1 + χm                                                             .....(5) 

Since 
μ

μ0

 = μr, the relative permeability, therefore- 

                                                             μr = 1 + χm                                                              .....(6) 

This is the relation between relative permeability and magnetic susceptibility. 
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11.5 MAGNETIC SUBSTANCES 
All substances, solids, liquids and gases, show magnetic properties. You can classify these 

substances on the basis of their magnetic behaviour- 

11.5.1 Diamagnetic Substances 

Some substances, when are placed in a magnetic field, are softly magnetized opposite to the 

direction of the magnetizing field. These substances when brought close to a pole of a powerful 

magnet, are somewhat repelled away from the magnet. They are called diamagnetic substances 

and their magnetism is called the diamagnetism. Bismuth, zinc, copper, lead, gold, silver, water, 

hydrogen, sodium chloride, nitrogen, mercury etc. are the examples of diamagnetic substances. 

Properties 

Diamagnetic substances have the following properties- 

1. These substances have negative magnetic susceptibility. 

2. The flux density in a diamagnetic substance placed in a magnetising field is slightly less    than 

that in the free space. 

3. The relative permeability of these substances is less than 1 i.e. μr< 1 for diamagnetic 

substances. 

4. The susceptibility of diamagnetic substances is independent of temperature. 

5. A diamagnetic gas, when allowed to ascend in between the poles of a magnet, spreads across 

the magnetic field. 

6. If a diamagnetic solution is poured into a U- tube and one arm of this U-tube is placed 

between the poles of a strong magnet, the level of the solution in that arm is depressed as 

shown in figure (1). 

 

 

 

 

 

 

 

 

 

 

                                                             Figure 1 
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7. In a non-uniform magnetic field, a diamagnetic substance tends to move from the stronger to 

the weaker part of the magnetic field.  If we take a diamagnetic liquid  in a watch glass placed on 

two magnetic poles very near to each other, then the liquid is depressed in the middle, where the 

magnetic field is strongest. Now, if the distance between the poles is increased, the liquid rises in 

the middle, because now the magnetic field is strongest near the poles (Figure 2). 

  

 

 

 

 

 

 Figure 2 

8. When a rod of diamagnetic material is suspended freely between two magnetic poles, then its 

axis becomes perpendicular to the magnetic field. The poles produced on the two sides of the rod 

are similar to the nearer magnetic poles (Figure 3). 

 

 

    n     s 
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Figure 3 

11.5.2 Paramagnetic Substances 

Some substances, when are placed in a magnetic field, are softly magnetized in the direction of 

the magnetising field. These substances, when brought close to a pole of a powerful magnet, are 

attracted towards the magnet. These substances are called paramagnetic substances and their 

magnetism is called paramagnetism. Aluminium, antimony, copper chloride, sodium, platinum, 
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manganese, liquid oxygen, solutions of salts of iron and nickel etc. are the examples of 

paramagnetic substances.   

 

Properties 

Paramagnetic substances have the following properties- 

1. These substances have positive magnetic susceptibility. 

2. The flux density in a paramagnetic substance placed in a magnetising field is slightly greater 

than that in the free space. 

3. The relative permeability of these substances is greater than 1 i.e. μr ˃ 1 for paramagnetic 

substances. 

4. The susceptibility of paramagnetic substances varies inversely as the kelvin temperature of the 

substance i.e.  

                                                                   χmα 
1

T
 

     This is known as Curie’s law. 

5. A paramagnetic gas, when allowed to ascend in between the poles of a magnet, spreads along 

the magnetic field.       

6. If a paramagnetic solution is poured into a U- tube and one arm of this U-tube is placed 

between the poles of a strong magnet, the level of the solution in that arm rises as shown in 

figure (4). 
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7. In a non-uniform magnetic field, a paramagnetic substance tends to move from the weaker to 

the stronger part of the magnetic field.  If we take a paramagnetic liquid in a watch glass 

placed on two magnetic poles very near to each other, then the liquid rises in the middle, 

where the magnetic field is strongest. Now, if the distance between the poles is increased, the 

liquid depresses in the middle and rises near the edges, because now the magnetic field is 

strongest near the poles (Figure 5). 

  

 

 

 

 

 

 Figure 5 

8. When a rod of paramagnetic material is suspended freely between two magnetic poles, then its 

axis becomes parallel to the magnetic field. The poles produced at the ends of the rod are 

opposite to the nearer magnetic poles (Figure 6). 
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Figure 6 

11.5.3 Ferromagnetic Substances 

Some substances, when placed in a magnetic field, are strongly magnetised in the direction of the 

magnetising field. These materials are attracted fast towards a magnet when brought close to 

either of the poles of the magnet. These are called ferromagnetic substances and their magnetism 

is called ferromagnetism. Iron,cobalt, nickel, magnetite  etc. are some ferromagnetic substances. 
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Properties 

The ferromagnetic substances have the following properties- 

1. These substances have positive and very large magnetic susceptibility. 

2. The relative permeability of these substances is very-very greater than 1 i.e. μr ˃ ˃1 for 

ferromagnetic substances. 

3. These substances show all the properties of paramagnetic substances to a much high degree. 

4. Ferromagnetism decreases with increase in temperature. If you heat a ferromagnetic 

substance, then at a definite temperature the ferromagnetic property of the substance suddenly 

disappears and the substance becomes paramagnetic. The temperature above which a 

ferromagnetic substance becomes paramagnetic is known as Curie temperature of the 

substance. The Curie temperature of iron is 7700 C and that of nickel is 3580 C. 

     You should know that as a matter of fact, every substance is diamagnetic. In those substances 

which are paramagnetic or ferromagnetic, the diamagnetic property is masked by the stronger 

paramagnetic or ferromagnetic properties. 

11.6 CURIE’S LAW 

In 1895, Curie discovered experimentally that the magnetization or intensity of magnetization of 

a paramagnetic substance is directly proportional to the magnetic intensity H of the magnetising 

field and inversely proportional to the Kelvin temperature T i.e. 

                                                                    M α 
H

T
 

Or                                                                M = C 
H

T
                                                         .....(7) 

where C is a constant. This equation is known as Curie’s law and the constant C is called the 

Curie constant. The law, however, holds so long the ratio 
H

T
 does not become too large. 

M cannot increase without limit. It approaches a maximum value corresponding to the complete 

alignment of all the atomic magnets contained in the substance. 

You can express Curie’s law in an alternative form. You know that the magnetic susceptibility 

χm is defined as- 

                                                                  χm = 
M

H
 

Putting the value of M from equation (7) in the above equation, we get- 



PHY (N)-102                                                                                                          ELECTRICITY AND MAGNETISM  
& PHY (N)-102L                                                                                                              & LABORATORY COURSE II   

212 
 

χm = 
C

H

T

H
 = 

C

T
 

or                                                                χm α 
1

T
 

i.e. the magnetic susceptibility is inversely proportional to Kelvin temperature. This is known as 

the Curie’s law. 

11.7 HYSTERESIS 

As you know that for ferromagnetic substances the magnetic flux density B is not a linear 

function of magnetic intensity H because in such cases, the relative magnetic permeability is not 

constant but is a function of H. In other words, we can say that there is no unique value of 

relative magnetic permeability for a particular ferromagnetic substance. The relationship 

between magnetic flux density B and corresponding magnetic intensity H for such a material 

initially unmagnetised is represented by a typical curve as shown in figure (7), known as the 

magnetization curve or B-H curve. 

 B 

 a 

 b 

                 Retentivity 

 c H 

  o f 

 Hc 

                               e 

 d 

 

                                                     Coercivity 

                                                          Figure 7 

Figure (7) represents the variation in B with variation in H. The point O represents the initial 

unmagnetised state of the substance (B =0) and a zero magnetic intensity (H =0). As H is 

increased, B increases non-uniformly along curved path oa. At a, the substance acquires a state 
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of magnetic saturation. Any further increase in H does not produce any increase in B. Now the 

value of B becomes practically constant. 

If now the magnetising magnetic field H is decreased, the magnetic flux density B of the 

substance also decreases following a new path ab, not the original path ao. Thus B lags behind H. 

When H becomes zero, B still has a value equal to ob. The magnetic flux density in the substance 

is seen to depend upon not on the magnetic intensity alone but on the magnetic history of the 

substance as well. At point b, the specimen has become a permanent magnet since magnetization 

is still present even though the magnetising field H has been cut off. The magnetization 

remaining in the substance when the magnetising field is reduced to zero is called the ‘residual 

magnetism’. The power of retaining this magnetization is called the ‘retentivity’ or the 

‘remanence’ of the substance. In this way, the retentivity of a substance is a measure of the 

magnetization remaining in the substance when the magnetising field is removed. In the above 

figure, ob represents the retentivity of the substance. 

If now the magnetising field H is increased in the reverse direction, the magnetic flux density B 

decreases along path bc, still lagging behind H, until it becomes zero at point c where H equals 

oc. This value of H is denoted by Hc. This value oc of the magnetising field is called the 

‘coercive force’ or ‘coercivity’ of the substance. Thus, the coercivity of a substance is a measure 

of the reverse magnetising field required to destroy the residual magnetism of the substance. 

When we increase H beyond oc, the substance is increasingly magnetised in the opposite 

direction along cd and a reverse induction is set up in the substance which quickly attains the 

saturation value. At point d, the substance is again magnetically saturated. 

By taking H back from its maximum negative value, through zero, to its original maximum 

positive value, a symmetrical curve defa is obtained. At point e where the substance is 

magnetised in the absence of any external magnetising field, it is said to be a permanent magnet. 

In this way, we found that the magnetization and also the magnetic flux density B always lags 

behind the magnetising field H. The lagging of B behind H is called ‘hysteresis’. The closed 

curve or loop, abcdefa which represents a cycle of magnetization of the substance is known as 

the ‘hysteresis curve or loop’ of the substance. On repeating the process, the same closed curve is 

traced again but the portion oa is never obtained. 

11.7.1 Energy Loss due to Hysteresis 

According to molecular theory of magnetization, the molecules of magnetised or unmagnetised 

magnetic substance are themselves complete magnets. When we apply a magnetised field, the 

molecular magnets align themselves in the direction of the field. During this process, work is 

done by the magnetising field in turning the molecular magnets against the mutual attractive 

forces. This energy required to magnetise a substance is not completely recovered when the 

magnetising field is turned off, since the magnetization does not become zero. The specimen 

retains some magnetization because some of the molecular magnets remain aligned in the new 
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formation due to the group forces. To destroy them out completely, a coercive force in the 

reverse direction has to be applied. In this way, there is a loss of energy in taking a magnet 

through a cycle of magnetization. This loss of energy or heat is called ‘hysteresis loop’. Now let 

us calculate this loss of energy. 

Let us consider a magnetic material having n molecular magnets per unit volume. Let m be the 

magnetic moment of each elementary magnet and θ the angle which its axis makes with the 

direction of magnetising field H, then magnetic moment per unit volume parallel to the magnetic 

field is- 

                                             μM = Σ m cosθ                                                                       .....(8) 

The magnetic moment per unit volume perpendicular to the magnetising field is Σ m sinθ and 

this is equal to zero since there can be no magnetization perpendicular to H. 

Now, the torque due to the magnetising field acting on the dipole of moment m when it is 

inclined at an angle θ to the field is- 

                                                     τ = μ0 m H sinθ                                                        .....(9) 

and the work done when it moves through a small angle from θ to θ + dθ = - τ dθ 

                                                                          = - μ0 m H sinθ dθ 

Here minus sign comes in because the work has to be done against the magnetic field in 

increasing θ by dθ.  

Hence, the work done per unit volume of the material dW = - μ0 m H sinθ dθ            .....(10) 

As θ increases by dθ, the intensity of magnetization M also increases by dM obtained from 

equation (8) as- 

                                                            dM = d (Σ m cosθ) 

                                                                   = - Σ m sinθ dθ                                            .....(11) 

From equations (10) and (11), we get- 

                                                                        dW = μ0H dM                                       .....(12) 

Thus, the work done by the magnetising field per unit volume of the material for completing a 

cycle is- 

                                                                       W = ∮dW 

                                                                            = ∮μ0H dM = μ0∮H dM 
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= μ0 ×Area of M-H loop                    .....(13) 

Since we know that- 

B = μ0 (H + M) 

Or                                                            dB = μ0 (dH + dM) 

Or                                                           dM = 
dB

μ0

 – dH                                                .....(14) 

Putting for dM in equation (13), we get- 

                                                                W = μ0∮H(
dB

μ0

 – dH) 

                                                                     = μ0∮H
dB

μ0

 - μ0∮H dH 

                                                                     = ∮H dB - μ0∮H dH .....(15) 

But ∮H dH = 0, because the plot of H against H  is a straight line and the area enclosed by it is 

zero. Thus equation (15) gives- 

                                                      W = ∮H dB 

                                                           = Area of B-H loop                                           .....(16) 

Thus, the work done per unit volume of the material per cycle is equal to the area of μ0 times the 

area of M-H loop or the area of B-H loop. The unit of this work is Joule/meter3 per cycle and is 

dissipated in the form of heat. 

11.7.2 Uses of Hysteresis Curve 

Importance of hysteresis curve 

By using the hysteresis curve of various ferromagnetic materials, we can select the material 

which gives minimum hysteresis curve when put to cycle of magnetization. From hysteresis 

curve, an idea of the magnetic properties like susceptibility, permeability, retentivity, coercivity 

of a ferromagnetic material can be made. 

The choices of a magnetic material for the construction of a permanent magnets, electromagnets, 

cores of transformer and magnetic shielding can be decided from the hysteresis curve of the 

sample. 

(i) Permanent magnets- The materials used for permanent magnets must have the following 

characteristics- 
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a) high retentivity so that the magnet may cause strong magnetic field 

b) high coercivity so that the magnetization is not wiped out by strong external fields, 

mechanical ill-treatment and temperature changes. The loss due to hysteresis is immaterial 

because the magnet in this case is never put to cyclic changes. 

According to these considerations, steel is better for permanent magnets than soft iron. 

(ii) Electromagnets- The material used for cores of electromagnets must have- 

a) maximum flux density with comparatively small magnetising field 

b) high initial permeability 

c) low hysteresis 

d) low coercivity 

e) high retentivity 

Considering these facts, soft iron is an ideal material for electromagnets. 

(iii) Transformer cores, Telephone diaphragms, Armature of dynamos and motors and 

cores of choke-In these cases, the material is subjected to cyclic changes of magnetization. 

Their material, therefore, must have the following characteristics- 

a)  low hysteresis loss 

b)  high initial permeability 

c) high specific resistance 

Therefore, soft iron is a good material for these purposes. 

(iv) Magnetic shielding- The magnetic material used for magnetic shield must have high 

saturation induction and very low coercivity.  

Example 1:A substance has magnetic susceptibility equal to 2. Calculate the relative 

permeability. 

Solution: Given, χm = 2 

We know- 

                                          μr  = 1 + χm = 1 + 2 = 3 

Example 2:The relative permeability for a material is 3. What will be its magnetic 

susceptibility? 
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Solution: Given μr = 3 

We know that- 

μr  = 1 +  χm 

or                                    χm = μr – 1 = 3-1 = 2 

 

Self Assessment Question (SAQ) 1:Choose the correct option- 

Diamagnetic substance when placed in a magnetic field is- 

(a) weakly attracted             (b) strongly attracted       (c) repelled      (d) none of these 

Self Assessment Question (SAQ) 2:Choose the correct option- 

The magnetic susceptibility of a diamagnetic material is- 

(a) large and positive  (b) large and negative    (c) small and positive     (d) small and negative 

Self Assessment Question (SAQ) 3:Choose the correct option- 

Which one represents the Curie’s law- 

(a) χm α 
1

T
                (b) χm α 

B

T
                    (c) χm α 

1

T2                (d) χm α 
1

T3 

11.8 SUMMARY 

In the present unit, you have learnt about magnetic susceptibility, different types of magnetic 

materials and Curie’s law. The magnetic susceptibility is defined as the ratio of the intensity of 

magnetization to the magnetic intensity of the magnetizing field. According to Curie’s law, the 

magnetic susceptibility of a magnetic material is inversely proportional to Kelvin temperature. 

You have also study about hysteresis, energy loss due to hysteresis and the applications of 

hysteresis loop. In the unit, you have calculated the energy loss due to hysteresis and proved that 

the work done per unit volume of the material per cycle is equal to the area of μ0 times the area 

of M-H loop or the area of B-H loop. To present the clear understanding of the unit, some solved 

examples are given in the unit. To check your progress, self-assessment questions (SAQs) are 

also given in the unit. 
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11.9 GLOSSARY  

Align- line up, bring into line, arrange in a line 

Hysteresis- When a ferromagnetic substance is first magnetized by external applied field H and 

then demagnetized, then the flux density lags behind the field H. This is called 

hysteresis. 

Magnetization- The magnetic state of any substance is described by a quantity  

11.10 TERMINAL QUESTIONS 

1. Define magnetic susceptibility. 

2. Define relative permeability. 

3. What is hysteresis? What does the area of hysteresis curve represent? 

4. What do you mean by retentivity and coercivity? Explain. 

5. How will you classify the substances on the basis of magnetic susceptibility? 

6. Establish the relation between relative permeability and magnetic susceptibility. 

7. Discuss the classification of substances on the basis of their magnetic behaviour. 

8. Discuss the properties of dia, para and ferromagnetic materials. 

9. Explain Curie’s law. 

10. What are the importances of hysteresis curve? Explain. 

11.  Steel is better for permanent magnet than soft iron. Why? 

12. Why soft iron is an ideal material for electromagnet? 

13. The relative permeability for a material is 6. What will be its magnetic susceptibility? 

11.11 ANSWERS 

Self Assessment Questions (SAQs): 

1. (c) repelled 

2. (d) small and negative 

3. (a) χm α 
1

T
 

Terminal Questions: 
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13. Given μr = 6 

We know that- 

μr  = 1 +  χm 

or                                    χm = μr – 1 = 6-1 = 5 
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12.1 INTRODUCTION 

In this unit we shall discuss the dynamics of charges. When the charges are stationary, an 

electrostatic field and static potential are developed in their vicinity. If the charges are placed in a 

region of non-uniform potential, they start to move and a current is set up. In conductors the 

electrons in the outermost orbits are relatively loosely bound to their respective atoms. When 

these conductors are placed in an electric field, a force starts to act on these free electrons. The 

direction of the force on positive charges is along the direction of the field and on negative 

charges is opposite to the field. The free charges start to move under the action of this force. The 

flow of free charges in a conductor constitutes electric current. 

12.2OBJECTIVES 

When you finish your study of this unit you should be able to 

 define electric current, its units and the conditions necessary for flow of current. 

 tell what are resistance, conductance, resistivity and conductivity. What are their symbols 

and what units are used to measure them? On what factors these quantities depend. 

 describe the relationship between voltage (potential difference),current and resistance in a 

simple circuit(Ohm's Law).Physical significance of Ohm’s law and its vector form. 

 define drift velocity and current density. 

 state equation of continuity and its physical significance 

 discuss the Wiedemann-Franz law and its drawbacks. 

 solve numerical problems involving the values of voltage (potential difference), current, 

resistance, drift velocity, current density, resistivity, conductivity etc. 

12.3 ELECTRIC CURRENT 

  In an electric circuit the charge is often carried by moving electrons. It can also be carried 

by ions in electrolyte. The rate at which charge flows past a point in a circuit is called the 

current. The current is a physical quantity that can be measured and expressed numerically. The 

current in a circuit at any instant can be measured by determining the quantity of charge passing 

per second through the cross-section of the wire at that instant. 

 If the rate of flow of charge is independent of time (i.e. steady) and q charge flows through the 

circuit in time t then current is given by 

𝑖 =  
𝑞

𝑡
      ------------- (1) 

If the rate of flow of charge varies with time then the instantaneous current is given by 
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𝑖 =
𝑑𝑞

𝑑𝑡
  ------------ (2) 

 

 

Figure 1: Charge q is passing through the cross-section of wire in time t, i.e., i = q/t 

 

If the charge is measured in Coulomb and time in seconds then the unit of current is Ampere. 

Ampere is often shortened to Amp(amp) and is abbreviated by the unit symbol A. Thus a current 

of 1 ampere means that there is 1 Coulomb of charge passing through the cross-section of wire 

every 1 second. 

i.e.,               1 ampere = 1 Coulomb/1 second 

Electric current is a scalar quantity as it does not follow the law of vector addition. The arrows 

used in the electric circuits represent the direction of flow of positive charge. 

Example 1: 1.0 mm long cross section of wire is isolated and 10 C of charge is allowed to pass 

through it in 10 s. Determine the value of current through it. 

Solution: The current is given by,     I = 
𝑞

𝑡
=

10 𝐶

10 𝑠
=0.5amp. 

Example 2: In a discharge tube, the 1.1x1019 electrons move parallel to the tube while 3x1018 

positive helium ions move in a direction opposite to that of electrons through the cross section 

per second. Find the magnitude and direction of the current. 

Solution: The current due to positive ions will be along the same direction as that of the motion 

of these ions. The direction of current due to the motion of electrons will be opposite to the 

direction of motion of electrons. Thus in the given problem, the contribution of current from 

positive ions and the electrons will be along the same direction and hence will be added. 

The charge on each electron,  q1 = 1.6x10-19 C. 

 

 
q 

i 
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Number of electrons,   n1 = 1.1x1019 

The current due to electrons,  I1 =
𝑛1𝑞1

𝑡1
 

=
1.1 × 1019 × 1.6 × 10−19

1
 = 1.76 A 

The charge on each helium ion, q2 =1.6x10-19 C. 

The number of helium ions,   n2 = 3x1018. 

The current due to helium ions, I2 =  
𝑛2𝑞2

𝑡2
 

=
3 × 1018 × 1.6 × 10−19

1
 = 0.48 A 

Thus the total current through discharge tube,  

I = I1 + I2 = 1.76 + 0.48 = 2.24 A 

The direction of the current will be along the direction of the movement of positive helium ions. 

Self Assessment Question (SAQ) 1: A current of 1.6 amp exist in 10 ohm resistance for 1 

minutes. How many electrons pass through any cross-section of the resistance in this time? 

Self Assessment Question (SAQ) 2: Whether the current is a scalar quantity or vector quantity. 

Justify your answer. 

Self Assessment Question (SAQ) 3: In the absence of any external field the free electrons in 

metallic conductor do not contribute anything towards current density. Justify. 

12.4 DRIFT VELOCITY 

You should have learnt by now that in a conductor the outermost orbit electrons in the 

atom are loosely bound and almost free to move from one place to another within the conductor 

because of the available thermal energy. In the absence of any field the motion of these free 

electrons is random just like the gas molecules in a vessel. They are, therefore, also called 

electron gas. 

In a metal when free electrons leave their atoms, the metal is left with positive ions. These 

electrons, during their motion, collide again and again with the positive ions and continuously 

change their directions of motion. Thus their velocities (due to thermal agitation) are randomly 

distributed and consequently the average velocity is zero. In other words we can say that the net 

transport of charge in any particular direction is zero and therefore, the electric current on 

account of thermal motion of free electrons is zero. 
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Figure 2: Drift motion of charge carriers in the direction of a field 

 

Now if a potential difference is set up between the two ends of a conductor, say by 

connecting a battery in the circuit, then the free electrons experience a force of -e�⃗� . Where e is 

the electronic charge and �⃗�  is the electric field developed. Negative sign indicates that the force 

on electrons is in the direction opposite to that of field direction. Due to this force the free 

electrons (charge carriers) are accelerated and in the way interact with the other free electrons 

and positive ions present in the conductor. In each collision they loss their energy and again 

accelerate by the field present. So we can think of backward force acting on the electrons during 

their motion. This force is called collision drag. 

The overall effect of applying potential difference between two ends of a conductor is that it 

gives a small constant velocity to charge carriers along the length of the conductor. This is 

known as drift velocity. Thus the average velocity with which the charge carriers move, under 

the action of electric field, is known as drift velocity. The drift velocity is usually represented as 

vd. 

 

 

E 
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Figure 3: Motion of the charge carries (electrons) in a conductor on the application of electric field 

and the current in the circuit 

 

12.5 CURRENT DENSITY 

If a current is flowing in the conductor then the current per unit area of it, when the area is taken 

along a direction normal to the current, is known as current density. Let us consider a current 

flowing through a conductor of length l and uniform cross-sectional area A. suppose this current 

is due to the motion of the electrons only. These electrons will possess the average drift velocity 

vd in a direction opposite to that of applied field. The value of vd for one second, in fact, gives 

the distance travelled by the electrons in one second. Therefore, the volume of the cylinder 

around the path traversed by electron in one second is given by 

E 

  

e 

e 
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e 
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e 
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𝑑𝑉 =  𝑣𝑑⃗⃗⃗⃗ .𝑑𝑠⃗⃗⃗⃗ ------------ (3) 

 

Figure 4: The small volume element of volume𝒗𝒅⃗⃗ ⃗⃗   . 𝒅𝒔⃗⃗ ⃗⃗  

 

If N is the number of charge carriers (electrons of charge e) per unit volume then the charge 

passing through the area 𝑑𝑠⃗⃗⃗⃗  in one second is  

dq = N e ( 𝑣𝑑⃗⃗⃗⃗ .𝑑𝑠⃗⃗⃗⃗  )------------ (4) 

 But charge passing per second is nothing but the current, hence 

dI=N e ( 𝑣𝑑⃗⃗⃗⃗ .𝑑𝑠⃗⃗⃗⃗  )------------ (5) 

 Here, the quantity N e  𝑣𝑑⃗⃗⃗⃗  is a vector, called the current density. The direction of the current 

density at a point is that along which a positive charge carrier would move if placed at that 

point. The current density is represented by J   and has the same direction as that of drift velocity. 

i.e.,    J = N e  𝑣𝑑⃗⃗⃗⃗                                                 ------------ (6) 

 From equations (5) and (6) we can write down 

dI =J .𝑑𝑠⃗⃗⃗⃗ ------------ (7) 

E 
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If we take a small element dI through a small area ds around a point and if ds is normal to dI then 

current density at that point is given by 

J =
𝑑𝐼

𝑑𝑠
�̂�------------ (8) 

 Where unit vector �̂� represents the direction of current. 

 If ds is the area element perpendicular to the current at a point then, current density may also be 

defined as 

J =
𝑑𝐼

𝑑𝑠
------------ (9) 

From equations (5) and (7) we can write an expression for the total current through a total surface 

S, using surface integral, as 

.
S

I dI J dS    

( . )d

S

I Ne v dS  ------------ (10) 

Here integral sign with S represent the integration over the entire closed surface taken into 

consideration (surface integral). 

Example 3: An aluminium wire whose radius is 0.05 cm is welded end to end to a copper wire 

with a diameter of 0.068 cm. the composite wire carries a current of 5.0 ampere. What is the 

current density in each wire? 

Solution: The cross-sectional area of aluminium wire is  

A1 = 𝜋 𝑟2 = 3.14 x (0.05)2 = 0.00785 cm2 

Therefore the current density in it is 

J = 
𝐼

𝐴
= 

5

0.00785
= 636.94 𝑎𝑚𝑝/𝑐𝑚2 

The cross-sectional area of copper wire is 

A2 = 𝜋 𝑟2 = 3.14 x (0.034)2 

= 0.00363 cm2 

Therefore the current density in it 

J = 
𝐼

𝐴
= 

5

0.00363
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= 1377.41 𝑎𝑚𝑝/𝑐𝑚2 

Example 4: A current of 1.0 ampere is flowing through a copper wire. If the area of cross-

section of wire be 0.01 cm2, find out the drift velocity of electrons in it. Assume one free electron 

per atom of copper and number of copper atoms in one cm3 is 8.0 x 1022. 

Solution: The expression for drift velocity is 

𝑣𝑑 =
𝐽

𝑛 𝑒
= 

𝐼

𝑛 𝑒 𝐴
           (∵ J = i/A) 

It is given that I = 1.0 ampere, n = 8.0 x 1022 cm-3 = 8.0 x 1028 metre-3, e = 1.6 x 10-19 C, and A = 

0.01 cm2 = 1.0 x 10-6 metre2 

∴                                   𝑣𝑑 = 
1.0

(8.0 ×  1028)𝑥(1.6 × 10−19) × (1.0 ×  10−6) 
 

                                       = 7.81 x 10-4 m/s. 

Example 5: In a region 40% of electrons have a drift velocity 2.0 cm/s along the direction of 

negative X-axis while the rest are moving with a drift velocity of 3.0 cm/s along positive 

direction of X-axis. Find the current density in the region assuming 5× 1022 electrons per c.c. 

present in the region. 

Solution: We know that the direction of current is taken opposite to the motion of the electrons. 

Thus due to the electrons motion along negative X-axis the current will flow along positive X-

axis and vice-versa. 

∴ Current density along positive X-axis 

J+ = N e vd=
40

100
 × 5 × 1022  × 1.6 ×  10−19  × 2.0 

= 6.4 ×  103amp/cm2 

Similarly the current along negative X-axis 

J- = N e vd = 
60

100
 × 5 × 1022  × 1.6 × 10−19  × 3.0 

= 14.4 ×  103amp/cm2 

Thus the net current density will be along negative X-axis and its value will be 

J = J- ~ J+ = 14.4 ×  103 - 6.4 ×  103 

= 8.0 × 103 amp/cm2 

Self Assessment Question (SAQ) 4: A copper wire of diameter 0.1626 cm is welded end to end 

with an aluminium wire of same radius. The composite wire carries a current of 20 amp. 

Calculate the current density in the wire and drift velocity of electrons in copper wire by 

assuming one free electron per atom in copper. The molecular weight of copper is 64, its density 

is 9.0 g/cc and the Avogadro number is 6 × 1023. 

Self Assessment Question (SAQ) 5: A current of 1.0 amp is flowing through an aluminium wire 

of cross-sectional area 10-6 m2. There are 1022 free electrons per cm3. The resistivity of 



PHY (N)-102                                                                                                          ELECTRICITY AND MAGNETISM  
& PHY (N)-102L                                                                                                              & LABORATORY COURSE II   

229 
 

aluminium is 1.6×10-3 ohm-m. Find the average speed of electrons in aluminium and the electric 

field within the wire. 

Self Assessment Question (SAQ) 6. A copper wire of diameter 1.0 mm carries a charge of 90 

coulombs in 75 minutes. It contains 5.8x1022 free electrons per cm3. Find the current in the wire 

andthe drift velocity of electrons. 

Self Assessment Question (SAQ) 7: A copper wire of cross-section 10-4 m2 carrying a current 

of 1.5 amp. If each atom contributes one free electron, calculate the drift velocity of free 

electrons. The atomic weight and density of copper are 63 and 9 g/cc respectively. 

 

12.6 EQUATION OF CONTINUITY 

  By now you have understood that how the drift velocity of charge carriers is responsible 

for current and how the current is related with current density. We can say that the amount of 

electric charge at any point can only change by the amount of electric current flowing into or out 

of that point. 

The continuity equation in physics describes the transport of some quantity. This equation 

tells us that any physical quantity (like energy) can move by a continuous flow. It cannot be 

teleported from one place to another. The equation of continuity in electric field is a relation 

between volume charge density ρ and current density vector J , this equation is given by 

  �⃗� .J  +
𝜕𝜌

𝜕𝑡
= 0------------ (11) 

 

 

Figure 5: A closed surface S enclosing a volume V and small area element ds enclosing a volume V.   

Vectors J  and 𝒅𝒔⃗⃗ ⃗⃗  represents the area vector and current density directions 

 

 

S, V 
P 

dV 
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In order to prove this equation, we consider a closed surface S enclosing a region of 

volume V and take an area element 𝑑𝑠⃗⃗⃗⃗  at point P of this surface. If J  is the current density vector 

at that point then charge flowing out from area element 𝑑𝑠⃗⃗⃗⃗  per second (current) is given by 

equation (7) as 

dI = J .𝑑𝑠⃗⃗⃗⃗ ------------ (12) 

Thus the total charge crossing the surface S per second (current) is given by equation (10) as 

.
S

I dI J dS   ------------ (13) 

If the current density (J ) remains unchanged with time everywhere then the current is said to be 

steady or stationary. Taking a case when current is not steady. The total charge enclosed by the 

closed surface, in terms of volume charge density𝜌, is given by 

    q = ∭𝜌 𝑑𝑉                                             ------------ (14) 

Where triple integral sign represents the integral over the entire volume i.e., the volume integral. 

Thus time rate of decrease of charge within the surface is given by 

  − 
𝑑𝑞

𝑑𝑡
= 𝐼 =  − 

𝜕

𝜕𝑡
∭ 𝜌 𝑑𝑉                             ------------ (15) 

From the conservation of charge we know that the total charge crossing the surface per second 

will be equal to the rate of decrease of charge in the volume enclosed by that surface. Thus from 

equations (13) and (15), we have 

.
S

I J dS  = −
𝜕

𝜕𝑡
∭𝜌𝑑𝑉=−∭

𝜕𝜌

𝜕𝑡
𝑑𝑉                    ------------ (16) 

From Gauss divergence theorem the surface integral of equation (16) may be converted into 

volume integral as 

.
S

I J dS  =∭(�⃗� . J ) 𝑑𝑉                                ------------ (17) 

Using equation (17) into (16), we obtain, 

∭(�⃗� . J ) 𝑑𝑉=−∭
𝜕𝜌

𝜕𝑡
𝑑𝑉                               ------------ (18) 

or                    �⃗� .J   = − 
∂ρ

∂t
------------ (19) 
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 or  �⃗� .J  + 
𝜕𝜌

𝜕𝑡
 = 0------------ (20)  

or divJ  + 
𝜕𝜌

𝜕𝑡
 = 0------------ (21) 

This equation is known as equation of continuity and represents the conservation of charge. The 

first term divJ in this equation represents the net outward flow of electric current per unit area 

from the closed surface S while the second term 
𝜕𝜌

𝜕𝑡
 gives the rate of change of charge per unit 

volume. 

12.7 RESISTIVITY AND CONDUCTIVITY 

On the basis of his experimental observations George Simon Ohm (1787-1854) find out 

that the current passing through a conductor is directly proportional to the potential difference 

applied across its two ends, provided the physical conditions (temperature etc.) remain the same. 

This is known as Ohm’s law. Thus if I is the current flowing through the conductor when 

potential difference between its two ends is V then from Ohm’s law we have 

I∝ V 

or                                                I = k V------------ (22) 

 

Where the proportionality constant k is known as the conductance of the conductor. Alternately 

we can say that the potential difference developed across the ends of a conductor is proportional 

to the current flowing through it, i.e.,  

V ∝ I 

V = R I------------ (23) 

Where the constant of proportionality R is called the resistance of the conductor. From equations 

(22) and (23), we have, 

k = 
1

𝑅
------------ (24) 

Thus the conductance is reciprocal of resistance. The SI unit of resistance is ‘ohm’ and 

therefore that of conductance is (ohm)-1 or ‘mho’. From equation (23) we can say that if on the 

application of 1 volt potential difference between the two ends of a linear conductor a current of 

1 amp flows through it then its resistance will be 1 ohm. The conductors obeying Ohm’s law are 

called Ohmic conductors or linear conductors and not obeying Ohm’s law are called non-Ohmic 
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conductors. The Ohmic conductors show a linear variation of I with V while non-Ohmic 

conductors show a non-linear variation. 

At a given temperature the resistance of an Ohmic conductor is directly proportional to its length 

l and inversely proportional to its area of cross-section A, i.e., 

R ∝
𝑙

𝐴
------------ (25) 

or                        R =𝜌
𝑙

𝐴
------------ (26) 

The constant of proportionality 𝜌 is known as the specific resistance or resistivity of the material 

of the conductor. Thus resistivity 

𝜌 = R
𝐴

𝑙
------------ (27) 

The SI unit of resistivity is Ohm-metre. Resistivity is the property of the material. It is 

independent of the shape and size of the conductor but depends on the nature and temperature of 

the material. From equation (27) we can say that the resistivity of the material of conductor of 

unit length and unit area of cross-section is equal to its resistance. The reciprocal of resistivity 

(or specific resistance) is known as electrical conductivity (or specific conductance) and is 

represented by symbol 𝜎. Thus  

𝜎=
1

𝜌
 =

𝑙

𝑅 𝐴
------------ (28) 

The SI unit of electrical conductivity is (Ohm-metre)-1 or mho/metre. 

Now for a linear conductor of homogeneous material (Ohmic medium) if I is the current flowing 

through it, J is current density, A is the area of cross-section and V is the potential difference 

applied across its ends, then electric field inside the conductor has magnitude 

𝐸 = 
𝑉

𝑙
------------ (29) 

orV = E l------------ (30) 

and current in terms of current density may be written as 

I = J A------------ (31) 
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From equations (23), (30) and (31) we can write 

E l = R J A                                           ------------ (32) 

or                                                             J =
𝑙

𝑅 𝐴
 𝐸------------ (33) 

Using equation (28) in (33), we get, 

J = 𝜎 E                                             ------------ (34) 

Thus for homogeneous material the current density J at any point is proportional to electric field 

strength E as long as the field is low. In vector notation it can be written as 

J =𝜎 �⃗�                                               ------------ (35) 

This is known as vector form of Ohm’s law. The electrical conductivity 𝜎 may also be defined as 

the ratio of current density J to electric field strength E, i.e., 

𝜎= 
|𝐽 |

|�⃗� |
------------ (36) 

The SI unit of 𝜎 is   
𝑎𝑚𝑝𝑒𝑟𝑒/𝑚𝑒𝑡𝑟𝑒2

𝑣𝑜𝑙𝑡/𝑚𝑒𝑡𝑟𝑒
= (Ohm-m)-1 or Siemens per metre (S-m-1). Again since 

resistivity (𝜌) is reciprocal to the conductivity (𝜎), it may also be defined as 

ρ =  
1

σ
= 

|E⃗⃗ |

|𝐽 |
                                    ------------ (37) 

The resistivity of a good conductor increases with temperature. The conductivity is the reciprocal 

of resistivity, therefore, decreases with increasing temperature. At very low temperature it 

becomes very large and at temperatures near absolute zero, the conductors become 

superconducting. 

 

Example 6: For a current of 1.0 ampere through a copper wire of length 10 m and diameter 0.08 

mm, the resistance of the wire is 32.85 ohm. Calculate the resistivity of wire and potential 

difference between its two ends. 

Solution: The resistivity of copper wire is given by 

 

𝜌 =  
𝑅 𝐴

𝑙
=  

𝑅 𝜋 𝑟2

𝑙
 

Given that, R =32.85 ohm, Radius (r) = 
0.08

2
 𝑚𝑚 = 0.04 × 10−3 m, 𝑙  = 10 m         
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∴            𝜌 =  
32.85 𝑜ℎ𝑚 × 3.14 × (0.04 ×  10−3)2𝑚2

10 𝑚
 

= 1.65 × 10−8 𝑜ℎ𝑚 − 𝑚 

The potential difference between two ends of the wire,  

V = R I = 32.85 ohm × 1 amp = 32.85 volts 

Example 7: A metallic wire carries a current of 1 amp. Its area of cross section is 0.1 cm2 and 

the resistivity of metal is 1.7×10-7 ohm-m. Calculate the electric field strength in the copper and 

the potential difference between two points 20 m apart along the length of this conductor. 

Solution: The current density in terms of electric field strength is given by 

J = σ E 

or E = 
𝐽

𝜎
= 

𝐼/𝐴

1/𝜌
=

𝜌 𝐼

𝐴
 

It is given that 𝜌 = 1.7× 10-7 ohm-m, I = 1.0 amp, A = 0.1 cm2 = 0.1×10-4 m2 and l =20 m 

∴   E = 
1.7×10−7×1.0

0.1×10−4 =1.7×10-2 volt/m 

The required potential difference 

V =E l = 1.7×10-2× 20 = 0.34 volt 

Self Assessment Question (SAQ) 8: An aluminium wire of cross-section 1 cm2 carries a current 

of 5.0 amp. What will be the value of electric field within the conductor? Also find the value of 

potential drop across its 2.0 km length. Resistivity of aluminium is 1.7× 10-6 ohm-cm. 

Self Assessment Question (SAQ) 9: A conductor of uniform cross-sectional area is 130 cm 

long. It has a voltage of 1.3 volt across its ends and a current density of 6.65×105 Am-2. What is 

the conductivity of its material? 

12.7.1 Conductivity- an atomic view  

  Due to the electric field �⃗�  inside the conductor a force q�⃗�  starts acting on charge carriers 

of charge q each. If m is the mass of charge carrier then its acceleration will be q�⃗� /𝑚. During 

their motion in the electric field, the charge carriers suffer collisions in the way and again 

accelerated. Just after a collision the velocity of charge carrier can be assumed to be zero. It then 

speed up with an acceleration q�⃗� /𝑚and therefore, from equation of motion, its velocity after 

time t is given by 

𝑣 = 0 + 
𝑞 �⃗� 

𝑚
 𝑡------------ (38) 

If the charge carriers are electrons with negative charge then the average drift velocity is 
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𝑣𝑑⃗⃗⃗⃗ =  
0+𝑣

2
= −

1

2

𝑒 �⃗� 

𝑚
 𝜏------------ (39) 

Where 𝜏 is the relaxation time (the time between two successive collisions. The expression for 

current density due to flow of electrons is obtained from equation (6) by replacing charge e with 

charge of electron –e as  

𝐽 = − 𝑁 𝑒 𝑣𝑑⃗⃗⃗⃗ ------------ (40) 

Substituting the value of 𝑣𝑑⃗⃗⃗⃗  from equation (39) into (40), we get, 

𝐽 =  
𝑁 𝑒2 𝜏

2 𝑚
�⃗� ------------ (41) 

Comparing equations (35) and (41), we can write 

𝜎 =  
𝑁 𝑒2 𝜏

2 𝑚
                                      ------------ (42) 

For a given sample, N, e and m are constant quantities independent of�⃗� . If time is also constant 

then 

𝜎 =  
𝐽 

�⃗� 
 = 

𝑁 𝑒2 𝜏

2 𝑚
 = constant                         ------------ (43) 

Since in a conductor there are large numbers of charge carriers, the total charge density is given 

by 

𝐽 = ∑
𝑁𝑖𝑒𝑖

2𝜏𝑖

2 𝑚𝑖
𝑖  �⃗�                                          ------------ (44) 

Here Ni, ei, i and mi represent the number density, charge, relaxation time and mass of one type 

(say ith) of charge carrier. 

12.7.2 Wiedemann-Franz law  

  The rate of heat transfer from one portion to another within the material depends upon the 

temperature gradient and thermal conductivity of the material. Thermal conductivity of metals is 

quite high. The metals which are good thermal conductors are generally good electrical 

conductors.  

At a given temperature the electrical and thermal conductivities of a metal are proportional 

to each other. On increasing the temperature, the thermal conductivity increases while the 

electrical conductivity decreases. This behavior is depicted by Wiedemann-Franze law. This law 

is named after Gustav Wiedemann and Rudolph Franz, who in 1853 reported that the ratio of 

thermal conductivity (K) to electrical conductivity (σ) has almost the same value for different 
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metals at the same temperature. The proportionality of K/σ with temperature was discovered by 

Ludvig Lorentz in 1872. Thus mathematical form of Wiedemann-Franz law can be written as 

𝐾

𝜎
 ∝ 𝑇------------ (45) 

or                                                              
𝐾

𝜎
 = 𝐿 𝑇                                        ------------ (46) 

where K is thermal conductivity, σ is electrical conductivity and the constant of proportionality L 

is called the Lorentz number. The relationship between two conductivities is based on the fact 

that the heat and electrical transport both involve the free electrons in the metal. 

 On increasing the temperature, the average velocity of the carriers increases. This increases the 

forward transport of energy (thermal) and hence thermal conductivity increases. The electrical 

conductivity decreases with increasing temperature as the collisions divert the electrons from 

forward transport of charge. Thus the ratio of thermal conductivity to electrical conductivity 

varies with the square of average velocity. If we consider the electron gas model then the thermal 

conductivity of a Fermi gas is given by 

𝐾 = 
𝜋2

3
 .

𝑁 𝑘𝐵
2  𝑇

𝑚 𝑣𝐹
2 𝑣𝐹 . 𝑙 =  

𝜋2 𝑁 𝑘𝐵
2  𝑇 𝜏

3 𝑚
------------ (47) 

Where 𝑘𝐵 is Boltzmann constant, vF is the velocity at Fermi surface, N is electron concentration, 

l is mean free path (the path between two successive collisions) and  is the relaxation time (the 

average time between two successive collisions) and therefore we have, l = vF.. Again we know 

that electrical conductivity is given by equation (42) as 

𝜎 =  
𝑁 𝑒2 𝜏

2 𝑚
                                 ------------ (48) 

Therefore Lorentz number 

𝐿 =
𝐾

𝜎 𝑇
 =  

2

3
𝜋2( 

𝑘𝐵

𝑒
 )2------------ (49) 

The value of L calculated by this formula is in good agreement with the experimental 

results. Experiments performed for measurement of electrical and thermal conductivities show 

that the value of L is not exactly the same for all materials. In the book entitled ‘Introduction To 

Solid State Physics’ 5th edition, New York: Wiley 1976, p.178 by Charles Kittel, some values of 

L are given; ranging from L = 2.23x10-8 for copper at 00 C to 3.2x10-8 W  K for tungsten at 

1000 C. Rosenberg noted that Wiedemann-Franz law is generally valid for high temperatures and 

low temperatures but may not hold true at intermediate temperatures. 

Example 8: Considering electron gas model, calculate the average time between two successive 

collisions of an electron with positive ions in copper. The electron concentration is 1028 per m3 

and resistivity of copper is 1.7 × 10-7 ohm-m. 



PHY (N)-102                                                                                                          ELECTRICITY AND MAGNETISM  
& PHY (N)-102L                                                                                                              & LABORATORY COURSE II   

237 
 

Solution: It is given that  

N = 1028 electrons per m3, and 𝜌 = 1.7 × 10-7Ω-m 

Thus conductivity,               𝜎 = 
1

𝜌
= 

1

1.7×10−7 

= 5.88 × 106(Ω − m)−1 

In electron gas model, the conductivity is given by 

𝜎 =  
𝑁 𝑒2 𝜏

2 𝑚
 

∴ 𝜏 =  
2 𝑚 𝜎

𝑁 𝑒2
=

2 × (9.1 ×  10−31) × 5.88 ×  106

1028 × (1.6 ×  10−19)2
 

= 4.18 × 10−14𝑠. 

Self Assessment Question (SAQ) 10: What will be the conductivity in a copper wire having 

electron concentration 1022 per cm3. The relaxation time of electrons is 4.18×10-14 s. The charge 

and mass of electron are 1.6×10-19 C and 9.1×10-31 kg respectively. 

12.8 SUMMARY 

 In this unit you have studied about the motion of the charge in an electric field and its 

consequences. To discuss the physics involved, various physical quantities like electric current, 

drift velocity, current density, resistivity, conductivity etc. are explained and equation of 

conductivity and Wiedemann-Franz law are also described in detail. You have learnt that the free 

charge carriers are responsible for electric conduction in materials. In the absence of any field the 

free electrons move randomly due to available thermal energy. Thus the net current in any 

direction is zero. When an electric field is applied a force starts acting on them and electrons 

acquire a net velocity along a specified direction. Due to this drift of electrons a conduction 

current is set up. The current density of this current is given byJ = N e 𝑣𝑑⃗⃗⃗⃗ . Conductivity, the 

reciprocal of resistivity, is defined as 𝜎=  
1

𝜌
 =  

𝑙

𝑅 𝐴
.The vector form of Newton’s is given by the 

equation J =𝜎 �⃗�  andthe resistivity in terms of electric field strength and current density is defined 

asρ =  
1

σ
= 

|E⃗⃗ |

|𝐽 |
. At atomic level the conductivity equation modifies to 𝜎 =  

𝑁 𝑒2 𝜏

2 𝑚
. The 

conservation of charge in space is given equation of continuity divJ  + 
𝜕𝜌

𝜕𝑡
 = 0. The Wiedemann-

Franz law gives the proportionality relation between thermal conductivity and electrical 

conductivity as
𝐾

𝜎
 = 𝐿 𝑇.The understanding of the solved examples given in the unit provide 
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reader an easy grasp of the subject and the reader can check his or her progress by going through 

self assessment questions. 

12.9 GLOSSARY 

Vicinity – nearness or closeness of space; In the vicinity – near. 

Constitute – be the components or essence of, make up, form. 

Respectively – in the order mentioned, for each separately or in turn. 

Significance – importance, noteworthiness, a concealed or real meaning. 

Drift – slow movement or variation. 

Instantaneous – occurring or done in an instant or instantly (immediately). 

Discharge – let go, release. 

Assessment –estimate the size or quality or value etc., evaluation 

Random – made, done, move etc., without method or conscious choice. 

Interaction –the action of atomic and sub atomic particles on each other, reciprocal action or 

influence. 

Drag – pull along (with effort or difficulty). 

Traverse – travel or lie across. 

Composite –made up of various parts. 

Teleport – move at a supposedly by paranormal means. 

Conservation –constancy of any quantity (preservation). 

Homogeneous – consisting of parts all of the same kind, uniform. 

Suffer – undergo, experience or be subjected to (pain, loss, grief, defeat, change etc.). 

Successive – following one after another. 

Gradient – the rate of rise or fall of temperature pressure etc. 

Depict –to describe. 

Vary – undergo change (become or be different) 
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12.10 TERMINAL QUESTIONS 

1. Define electric current, drift velocity and current density. Is current density a vector quantity 

or scalar quantity? 

2. A copper conductor of cross sectional area 10-4 m2 carries a current of 200 amp. There are 

about 8.5×1028 free electrons per m3 and the resistivity of copper is 1.72×10-8 ohm-m-1. Find 

the drift velocity of free electrons, the average electric field strength and the potential 

difference between two points of the conductor 200 m apart. 

3. The conductivity of sulphur is about 10-15 mho/m. Find the current density in sulphur when it 

is subjected to an electric field of 2000 volts/cm. 

4. Derive the expression 𝐽 = 𝑁 𝑒 𝑣𝑑 for current density. 

5. What will be the current in a hydrogen discharge tube if in each second 4×1018 electrons and 

1018 protons move in opposite direction through the cross section of the tube? 

6. The conductivity of a copper wire is 3.5×107 mho/m. It carries a current of uniform density 

8×105 A/m2. Find the electric field in the wire and the potential difference per unit length of 

the wire. 

7. Define specific resistance and electrical conductivity. Using Ohm’s law derive relation𝐽 =

 𝜎 𝐸 

8. Derive an expression for equation of continuity. What is its physical significance? 

9. State Wiedemann-Franz law and write an expression showing the mutual dependence of 

electrical and thermal conductivities.  

12.11 OBJECTIVE TYPE QUESTIONS 

Q.1. The specific resistance of a wire depends upon 

(a) its length      (b) its cross-sectional area 

(c) its dimensions      (d) its material 

Q.2. The resistance of a wire is doubled if 

(a) its radius and length both are doubled  (b) its radius is doubled and length is halved 

(c) its radius is halved and length is doubled (d) its radius and length both are halved 

Q.3. The resistance of a wire of uniform diameter d and length l is R. The resistance of another 

wire of same material but diameter 2d and length 4l will be 
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(a) 2R   (b) R    (c) R/2   (d) R/4 

Q.4. Zero potential difference is applied across a metallic conductor. The mean velocity of free 

electrons at absolute temperature T is: 

(a) proportional to T                  (b) proportional to √𝑇 

(c) zero        (d) finite but independent of 

T 

Q.5. The equation, J = 𝜎 𝐸 is a form of  

(a) Ohm’s law                   (b) Ampere’s law 

(c) continuity equation      (d) Maxwell’s equation 

Q.6. The continuity equation for steady current gives 

(a) ∇. 𝐽 = 0                                                                                            (b)∇. 𝐽 = −
𝜕𝜌

𝜕𝑡
 

(c) ∇ × 𝐽 = 𝜌                    (d) ∇. 𝐽  = 𝜌 𝐼 

 

12.12 ANSWERS 

Self Assessment Questions (SAQ): 

1: The charge passed through the cross-section of the resistance in 2 minutes is 

q = I t = 1.6 amp × (1 × 60) sec = 96 C 

Thus the number of electrons passing through the cross section of resistance in 2 min 

N = 
𝑞

𝑒
= 

96

1.6 ×10−19 = 6.0 × 1020 

2: Refer Article 13.3. 

3: Refer Article 13.4. 

4: The area of cross-section of wire is 

𝐴 =  𝜋 𝑟2 = 3.14 × (
0.1626 × 10−2

2
)

2

 

= 2.075 × 10−6𝑚2 
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Thus the current density in wire 

𝐽 =  
𝐼

𝐴
=  

20

2.075 ×  10−6
 

= 9.636 × 106 𝐴/𝑚2 

The density (𝜌) of copper is 9.0 g/cc, thus the mass of the copper per unit volume is 9.0 g. Since 

64 g (molecular weight, M) of copper contains 6 × 1023 atoms (Avogadro number, NA), the 

number of atoms per unit volume, N (number of atoms in 9.0 g) will be  

𝑁 = 
𝜌 𝑁𝐴

𝑀
= 

9.0 × 6 ×  1023

64
 

= 8.437 ×  1022
𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑛𝑠

𝑐𝑚3
 

= 8.437 × 1028 𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑛𝑠/𝑚3 

The current density is given by J = N q vd. Thus 

𝑣𝑑 = 
𝐽

𝑁 𝑞
=  

9.636 ×  106

8.437 ×  1028  × 1.6 × 10−19
 

= 5.668 × 10−4 𝑚/𝑠. 

5: The drift velocity 

𝑣𝑑 = 
𝐽

𝑛 𝑞 
=  

𝐼
𝐴⁄

𝑛 𝑞
= 6.25 × 10−4 𝑚/𝑠 

We also know that, 

𝐽 =  𝜎 𝐸  

or     𝐸 =  
𝐽

𝜎
= 𝐽 𝜌 = 1.6 × 10−2 𝑉/𝑚 

6: (i) The current in the wire, 

I = 
𝑡𝑜𝑡𝑎𝑙 𝑐ℎ𝑎𝑟𝑔𝑒

𝑡𝑜𝑡𝑎𝑙 𝑡𝑖𝑚𝑒
= 

90 𝐶

75 ×60 𝑠𝑒𝑐
= 0.02 𝐴 

The current density,   J = n e vd 

or   
𝐼

𝐴
= 𝑛 𝑒 𝑣𝑑     (∵ 𝐽 =  

𝐼

𝐴
) 

Here n = 5.8x1022 electrons/cm3= 5.8x1028 m3, e = 1.6x10-19C, r = 
1.0x10−3

2
 = 0.5x 10-3 m 



PHY (N)-102                                                                                                          ELECTRICITY AND MAGNETISM  
& PHY (N)-102L                                                                                                              & LABORATORY COURSE II   

242 
 

∴A = 𝜋 × 𝑟2= 3.14x (0.5x 10-3)2 

Thus    vd= 
𝐼

𝑛 𝑒 𝐴
= 

0.02

(5.8×1028)(1.6×10−19)×3.14×(0.5×10−3)2
 

= 2.746x10-5 m/s 

7: Current density 𝐽 =  
𝐼

𝐴
= 1.5 × 104 𝐶

𝑚2𝑠
 

Number of atoms in 63 g = 6.02 × 1023 (Avogadro number) 

Thus, the number of atoms in 9 g (number of atoms per cc),  

N = 
6.02 ×1023×9 

63
Drift velocity, vd = 

𝐽

𝑁 𝑒
= 10.9 × 10-5 ms-1 

 

8: Electric field 

𝐸 = 
𝐽

𝜎
= 𝐽 𝜌 =  

𝐼

𝐴
 𝜌 

= 5.0 × 1.7 × 10−6 = 8.5 × 10−6 𝑣𝑜𝑙𝑡/𝑐𝑚 

Potential difference,  V = E l = 8.5 × 10-6× 105 = 0.85 volt 

9: Conductivity 

𝜎 =  
𝐽

𝐸
=  

𝐽

𝑉 𝑙⁄
=  

6.65 × 105

1.3 1.3⁄
 

                                                       = 6.65 × 105 (ohm-m)-1 

10: The conductivity  

         𝜎 =  
𝑁 𝑒2 𝜏

2 𝑚
= 5.88 ×  106(Ω − m)−1 

Terminal Questions: 

2. 1.5×10-4 m/s, 0.0344 volt, 7. 08 volt 

3. 2×10-10 A/m2. 

5. 0.88 A. 

6. 2.287 volt/m, 2.287 volt 

Objective Type Questions: 

1. d.  2. d.   3. b.  4.c.  5. a.  6. a. 
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13.1INTRODUCTION 
Alternating current is produced by a voltage source whose terminals polarity keeps alternating 

with time. As a result of constantly reversing polarity of voltage source, the direction of current 

flow in the circuit also keeps reversing. It is obvious that an alternating voltage source will cause 

an alternating current in the circuit. In short alternating current is denoted by AC. On the other 

hand a voltage source, whose polarity remains constant with time, is called DC source and the 

current produced by this source is called direct current. AC voltage or AC current is sometimes 

called sinusoidal voltage and sinusoidal current. 

  Figure 1 
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13.2 OBJECTIVE 

The purpose of this chapter is to study the behavior of alternating current in different electronic 

components (resistor, inductor and capacitor). We shall discuss resistance produced by every 

component called resistance, inductive reactance and capacitive reactance respectively. We shall 

also discuss the net resistance produced by the combinations of these components called 

impedance.  

13.3 WHAT IS ALTERNATING CURRENT?  

Alternating current (AC) is an electric current which periodically reverses direction. 

13.3.1 Cycle 

One complete set of positive and negative values of an alternating quantity is known as a cycle. 

A cycle is sometimes specified in terms of angular measure, one complete cycle equal to 2π 

radians. 

Time period-It is the time taken by alternating voltage or current to complete one cycle. 

13.3.2 Frequency 

The number of cycles per second made by alternating voltage or current is called its frequency. 

Instantaneous value- It is the value of current that exists at any instant of time measured from 

one reference point, mathematically it is given by 𝐼 = 𝐼𝑜𝑠𝑖𝑛 𝜔𝑡 

13.3.3 Peak value or maximum value 

It is the highest value reached by the current in one cycle. This peak value of current is also 

called amplitude of the current. 

Peak to peak value- this is the positive peak and negative peak values usually written as p-p 

value. 

13.3.4 Root mean square value 

It is also called the effective value. The value of alternating voltage which we read by an 

instrument is the r.m.s. value of voltage, actually peak value =√2×r.m.s. value. 

13.3.5  Average value 

It is the arithmetic average of all instantaneous values in one half cycle of the wave. For a 

sinusoidal wave  

value average = 0.673 × 𝑝 − 𝑝 𝑣𝑎𝑙𝑢𝑒 

13.4 AC CIRCUIT HAVING PURE RESISTANCE ONLY 
When an alternating voltage is applied across a pure ohmic resistance it produces an alternating 

current through the resistance. 

1. Which is in phase with the voltage  

2. Whose r.m.s. value is given by 𝐼 = 𝑉/𝑅 
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Figure 2 

If the expression of applied voltage is  

𝑉 =  𝑉𝑜𝑠𝑖𝑛 𝜔𝑡    ………..(1) 

 then the equation of current is  

𝐼 = 𝐼𝑜𝑠𝑖𝑛 𝜔𝑡    ………..(2) 

Comparing equation (1) and (2) it is obvious that in a pure resistor the current is always in the 

same phase as the applied voltage which is graphically represented in Figure 2(b). The power 

dissipated in the circuit in the form of heat is 𝐼2𝑅.  

13.5 AC CIRCUIT HAVING PURE CAPACITANCE ONLY 

When an alternating voltage 𝑉 =  𝑉𝑜𝑠𝑖𝑛 𝜔𝑡 is applied across a pure capacitor it produces an 

alternating current through the circuit whose magnitude is given by  

𝐼 =  
𝑉

𝑋𝑐
 

 

 
Figure 3 

Where 𝑋𝑐 = 
1

𝜔𝐶
 =  

1

2 𝜋𝑓𝐶
 called capacitive reactance. 

For direct current (DC) 

𝑓 = 0, hence 𝑋𝑐 = ∞ 
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The current through the circuit leads the applied voltage by 90oas shown in figure (3b) hence the 

equation of current is given by 
 

𝐼 = 𝐼𝑜𝑠𝑖𝑛(𝜔𝑡 + 𝜋/2) = 𝐼𝑜𝑐𝑜𝑠 𝜔𝑡 

 

Instantaneous power dissipation in this circuit is given by  

𝑃 = 𝑉𝐼  =  𝑉𝑜 𝑠𝑖𝑛 𝜔𝑡 𝐼𝑜 𝑐𝑜𝑠 𝜔𝑡 

 

= 𝑉𝑜𝐼𝑜𝑠𝑖𝑛 𝜔𝑡 𝑐𝑜𝑠 𝜔𝑡 

 

Average power dissipated by this circuit is zero because 

< sin ωt cos ωt > =
1

2
< 𝑠𝑖𝑛2𝜔𝑡 > = 0.  

=> 𝑃 = 0 

13.6 AC THROUGH PURE INDUCTANCE ONLY 
When an alternating voltage is applied across a pure inductive coil of inductance L it produces an 

alternating current through the circuit. As the current in the coil varies continuously an opposite 

back voltage is set up in the coil whose magnitude is L 
𝑑𝐼

𝑑𝑡
 where I is instantaneous current. The 

net instantaneous voltage is  

Vosin ωt −  L 
𝑑𝐼

𝑑𝑡
 

 
Figure 4 

 

Since there is no resistance in the circuit, hence instantaneous voltage should be zero. Thus 

Vosin ωt − L 
𝑑𝐼

𝑑𝑡
= 0 

Vosin ωt = L 
𝑑𝐼

𝑑𝑡
                        …………….(3) 

Solving above equation  
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I = −
𝑉𝑜

𝜔𝐿
cos ωt 

𝐼 =
𝑉𝑜

𝜔𝐿
sin ( ωt − π/2) 

𝐼 = 𝐼𝑜 𝑠𝑖𝑛 ( 𝜔𝑡 −
𝜋

2
)                     ……………(4) 

where𝐼𝑜 =
𝑉𝑜

𝜔𝐿
 is the maximum current 

Comparing the above current equation with voltage equation it is clear that for a pure inductive 

circuit current lags behind the voltage by π/2 as shown in figure(4b). 

Instantaneous power dissipation in this circuit is given by  

𝑃 = 𝑉𝐼  =  𝑉 𝑜𝑠𝑖𝑛 𝜔𝑡 𝐼𝑜 𝑐𝑜𝑠 𝜔𝑡 

 

𝑃 = 𝑉𝑜𝐼𝑜𝑠𝑖𝑛 𝜔𝑡 𝑐𝑜𝑠 𝜔𝑡                         …….(5) 

 

Average power dissipated by this circuit is zero because 

sin ωt cos ωt =
1

2
sin 2ωt 

< sin 2ωt > = 0 

=> 𝑃 = 0 

In the expression Io =
𝑉𝑜

𝜔𝐿
 , ωL has the dimension of resistance and it is called inductive reactance 

and denoted by XL 

thus     𝑋𝐿 = 𝜔𝐿 = 2𝜋𝑓𝐿,  

when f is in Hertz and L is in Henry then XL is in ohm. 

 

13.7 AC THROUGH L-R CIRCUIT 

 

When an alternating voltage is applied across a pure inductive coil of inductance L, in series with 

a resistor R, it produces an alternating current through the circuit. The potential difference arises 

across L and R is VL and VR respectively. 
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Figure 5 

 

Vosin ωt = RI + 𝐿
𝑑𝐼

𝑑𝑡
                         ……………(6) 

Suppose the solution of the above equation is 

 

𝐼 = 𝐼𝑜 𝑠𝑖𝑛 (𝜔𝑡 − 𝜙)                       …..……….(7) 

 

where Io is the peak value of the current and ϕ is the phase angle to be determined. 

Differentiating equation (7) w.r.t. time, we get 

 

𝑑𝐼/𝑑𝑡 = 𝐼𝑜 𝜔𝑐𝑜𝑠 (𝜔𝑡 − 𝜙) 

substituting this diff. coff. in above equation (6) 

𝑅𝐼𝑜 𝑠𝑖𝑛 (𝜔𝑡 − 𝜙) + 𝐿𝐼𝑜 𝜔𝑐𝑜𝑠 (𝜔𝑡 − 𝜙)  =  𝑉𝑜𝑠𝑖𝑛 𝜔𝑡 

= 𝑉𝑜𝑠𝑖𝑛 {(𝜔𝑡 − 𝜙) + 𝜙} 

𝑅𝐼𝑜 𝑠𝑖𝑛 ( 𝜔𝑡 −  𝜙) + 𝐿𝐼𝑜 𝜔𝑐𝑜𝑠 (𝜔𝑡 − 𝜙)  =  𝑉𝑜{𝑠𝑖𝑛 (𝜔𝑡 − 𝜙)𝑐𝑜𝑠 𝜙 −  𝑐𝑜𝑠 (𝜔𝑡 − 𝜙)𝑠𝑖𝑛 𝜙} 

comparing coefficients both side 

𝑅𝐼𝑜 = 𝑉𝑜𝑐𝑜𝑠 𝜙                                           ………….(8) 

𝐿𝐼𝑜 𝜔 =  𝑉𝑜 𝑠𝑖𝑛 𝜙…………(9) 

squaring and adding equ. (8) & (9) 

(𝐿2𝜔2 + 𝑅2)𝐼𝑜
2 = 𝑉𝑜

2 

Io =
𝑉𝑜

√(L2ω2+ R2)
                                    ………….(10) 

dividing equ. (9) by (8) 
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tanϕ =
𝜔𝐿

𝑅
                                       ..............(11) 

substituting the value of Io in equation (7) 

I =
𝑉𝑜

√(L2ω2+ R2)
 sin (ωt - ϕ)                 .………(12) 

this is the instantaneous value of current in the circuit and 
𝑉𝑜

√(L2ω2+ R2)
 is its amplitude. The 

impedance of the circuit is defined as 

Z =
𝑉𝑜

𝐼𝑜
= √(L2ω2 + R2)                  …………(13) 

13.8 AC THROUGH R-C CIRCUIT 
 

When an alternating voltage is applied across a capacitor of capacitance C in series with a 

resistor R, it produces an alternating current through the circuit. The potential difference arises 

across C and R is VC and VR respectively. 

 
Figure 6 

Let q be the charge on the capacitor at any instant and I the current in circuit at that instant. The 

potential difference across the capacitor at this instant is q/C. The effective potential difference 

in the circuit is  

𝑉𝑜𝑠𝑖𝑛 𝜔𝑡 −
𝑞

𝐶
 

which must be equal to RI. 

or      𝑅𝐼 + 𝑞/𝐶 =  𝑉𝑜𝑠𝑖𝑛 𝜔𝑡 

differentiating w.r.t. t, we get 

𝑅
𝑑𝐼

𝑑𝑡
 +

1

𝐶

𝑑𝑞

𝑑𝑡
= Voω cos ωt   

𝑏𝑢𝑡
𝑑𝑞

𝑑𝑡
= 𝐼 

hence𝑅
𝑑𝐼 

𝑑𝑡
 + 

𝐼

𝐶
= Voω cos ωt   …………..(14) 
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The current in circuit varies harmonically with same frequency as the applied alternative 

potential difference but differing in amplitude and phase.  Hence we may assume the solution of 

equ.(14) as  

 

𝐼 = 𝐼𝑜𝑠𝑖𝑛 (𝜔𝑡 − 𝜙)……….(15) 

differentiating equ. (15) w.r.t. t 

𝑑𝐼

𝑑𝑡
= Io ω cos (ωt − ϕ) 

 

substituting the value of  I and dI/dt in equ (14) 

R Io ω cos (ωt-ϕ) + 
Io

𝐶
sin (ωt − ϕ) = Voω cos ωt   

= Voω cos [(ωt − ϕ) + ϕ] 

=Voω [cos (ωt − ϕ)cosϕ − sin (ωt − ϕ)sinϕ] 

comparing the coefficients of sin and cos functions both side 

 

IoRω = Voωcosϕ………….(16) 

 
Io

C
= −Voωsinϕ                            .…………(17) 

 

squaring and adding equ (16) and (17) 

 

Io
2 (R2ω2 +

1

C2)=Vo
2𝜔2 

 

Io
2 (R2 +

1

ω2C2)=Vo
2 

 

Io =
Vo

√R2+
1

ω2C2

                                    ..…………(18) 

dividing equ.(iv) by equ.(iii) 

tanϕ = −
1

RωC
 

 

substituting the value of Io in equation (15) 
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I =
Vo

√R2 +
1

ω2C2

sin(𝜔𝑡 − 𝜙) 

 

where ϕ =  tan−1 (−
1

𝑅𝜔𝐶
), which indicates that phase angle ϕ is negative. Hence the proper 

way of writing the expression for current is 

I =
Vo

√R2+
1

ω2C2

sin(𝜔𝑡 + 𝜙)………….(19) 

This is the equation of current in circuit at any instant. WhereIo =
Vo

√R2+
1

ω2C2

 is the amplitude of 

the current, 
1

𝜔𝐶
 is capacitive reactance of capacitor and denoted by XC. The quantity √R2 +

1

ω2C2
 

is impedance ‘Z’ of the circuit. Thus Z = √R2 + XC
2. Thus it is clear from equation (19) that the 

current leads the applied potential (emf) by an angle ϕ = tan−1 (
𝑋𝐶

𝑅
) 

Since a pure capacitor consumes no power, the entire power consumption is due to resistor only 

 

P = I2𝑅 = 𝑉𝐼 cos 𝜙 

Vector diagram:  

Let Vc and VR are the magnitude of potential differences across C and R respectively. Then we 

have  

𝑉𝐶 = 𝐼𝑋𝐶  𝑎𝑛𝑑 𝑉𝑅 = 𝐼𝑅 

Since VR is in phase with current while VC is lags behind I by an angle π/2. These quantities can 

be represented by a Vector diagram as shown in figure 6(b). 

V2 =𝑉𝑅
2 + 𝑉𝐶

2 

 

𝑏𝑢𝑡    𝑉 = 𝐼𝑍 

thus  

I2Z2 = I2R2  + I2XC
2 

 

Z2 =R2  + XC
2 

 

Z =√R2  + XC
2 
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tanϕ =
VC

VR
=

1

ωCR
 

 

where ϕ is the angle by which current in the circuit leads the applied potential difference. 

13.9 AC THROUGH  L-C CIRCUIT 
when an alternating voltage, 𝑉 =  𝑉𝑜 𝑠𝑖𝑛 𝜔𝑡, is applied across a series LC circuit then the 

potential difference across the capacitor at an instant is 𝑞/𝐶 and potential difference across 

inductor is 𝐿(𝑑𝐼/𝑑𝑡) both are opposite in phase. Since there is no resistance in the circuit hence 

the effective potential in the circuit is 

 
Figure 7 

 

𝑉𝑜 sin𝜔𝑡 =
𝑞

𝐶
+ 𝐿

𝑑𝐼

𝑑𝑡
 

differentiating w.r.t. t, we get 

𝐿
𝑑2𝐼

𝑑𝑡2
+

1 𝑑𝑞

𝐶 𝑑𝑡
= 𝑉𝑜 ωcos𝜔𝑡 

 

but
𝑑𝑞

 𝑑𝑡
= 𝐼 

 

hence 𝐿
𝑑2𝐼

𝑑𝑡2
+

𝐼

𝐶 
= 𝑉𝑜 ωcos𝜔𝑡..……….(20) 

 

let the solution of above equation  in the form  

 

𝐼 = 𝐼𝑜 sin(𝜔𝑡 − 𝜙)……….(21) 

 

where Io and ϕ are constants to be determined. Differentiating equation (21) twice we get 
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𝑑2𝐼

𝑑𝑡2
= −𝐼𝑜 ω2sin(𝜔𝑡 − 𝜙) 

 

putting this value in equation (20) 

 

−𝐿𝐼𝑜 ω2sin(𝜔𝑡 − 𝜙) + 
𝐼𝑜
𝐶

sin(𝜔𝑡 − 𝜙) = 𝑉𝑜 ωcos𝜔𝑡 

= 𝑉𝑜 ωcos[(𝜔𝑡 − 𝜙) + 𝜙] 

= 𝑉𝑜 ω[cos(𝜔𝑡 − 𝜙) cos𝜙 −sin (𝜔𝑡 − 𝜙) sin 𝜙] 

 

This equation should be true for all values of t. hence the coefficients of sin (𝜔𝑡 − 𝜙) and 

cos (𝜔𝑡 − 𝜙) functions of both sides must be equal  

 

−𝐿𝐼𝑜ω
2 + 

𝐼𝑜

𝐶
= −𝑉𝑜 ω sin𝜙………….(22) 

 

0 = 𝑉𝑜 ωcos𝜙                                …...……..(23) 

 

squaring and adding equ.(22) and (23) 

(−𝐿𝐼𝑜ω
2 +

𝐼𝑜

𝐶
)
2

=( 𝑉𝑜ω)2 

𝐿𝐼𝑜𝜔 −
𝐼𝑜
𝐶𝜔

=  𝑉𝑜 

 

 𝐼𝑜 =
 𝑉𝑜

𝐿ω −
1

𝐶ω

                                        ………….(24) 

dividing equ (22) by equ (23) 

tanϕ = ∞ 

 

or ϕ =  
𝜋

2
                                      …………(25) 

substituting the value of  𝐼𝑜𝑎𝑛𝑑 𝜙 in equation (ii) we get 

𝐼 = (
 𝑉𝑜

𝐿ω −
1

𝐶ω

) sin (𝜔𝑡 −
𝜋

2
) 

 

𝐼 = (
 𝑉𝑜

𝑋𝐿−𝑋𝐶
) sin (𝜔𝑡 −

𝜋

2
)                            ……........(26) 

 

where XL is inductive reactance and XC capacitive reactance.  
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This is the equation of instantaneous current in circuit which is exactly lagging behind by a 

factor 
𝜋

2
 with applied alternating potential or emf, and the current I will be infinite when 𝑋𝐿 = 𝑋𝐶 

 

or𝐿ω −
1

𝐶ω
= 0 

 

ω2 =
1

LC
 

ω =
1

√LC
 

 

2πf =
1

√LC
 

 

f =
1

2π√LC
                          ……….(27) 

This expression represents the natural frequency of the circuit. Hence the amplitude of the 

current in the circuit is infinite (maximum) when frequency of the applied alternative potential 

(emf) is exactly equal to the natural frequency of the circuit. This condition is called resonance. 

 

13.10  AC THROUGHL-C-R CIRCUIT 
When an alternating voltage,𝑉 = 𝑉𝑜 𝑠𝑖𝑛 𝜔𝑡, is applied across a series LCR circuit then the 

potential difference across the capacitor is 𝑞/𝐶 and potential difference across inductor is 

𝐿(𝑑𝐼/𝑑𝑡)both are opposite to the applied voltage. The effective voltage at that instant is 

therefore  

𝑉𝑜 𝑠𝑖𝑛 𝜔𝑡  −  𝑞/𝐶 −  𝐿𝑑𝐼/𝑑𝑡 

which must be equal to IR 

𝑉𝑜 𝑠𝑖𝑛 𝜔𝑡 −  𝑞/𝐶 −  𝐿𝑑𝐼/𝑑𝑡  =  𝐼𝑅 

 

or 𝑉𝑜 𝑠𝑖𝑛 𝜔𝑡 =  𝐼𝑅 +  𝑞/𝐶 +  𝐿𝑑𝐼/𝑑𝑡 

 

  𝐿𝑑𝐼/𝑑𝑡 + 𝐼𝑅 +  𝑞/𝐶  = 𝑉𝑜 𝑠𝑖𝑛 𝜔𝑡 

 

differentiating w.r.t. to t 
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Ld2I/dt2 + RdI/dt +
1

𝐶
dq/dt = Vo ωcos ωt 

but 𝑑𝑞/𝑑𝑡 =  𝐼 

Ld2I

dt2
+ RdI/dt +

𝐼

𝐶
= Voωcos ωt  ……….(28) 

In the steady state the current alternates with same frequency as the applied voltage but may 

differ in amplitude and phase. The solution of the above equation in steady state will be in the 

form  

 

𝐼 = 𝐼𝑜 𝑠𝑖𝑛 (𝜔𝑡 − 𝜙)                                ………(29) 

𝑑𝐼

𝑑𝑡
= 𝐼𝑜𝜔𝑐𝑜𝑠 (𝜔𝑡 − 𝜙) 

𝑑2𝐼/𝑑𝑡2  =  −𝐼𝑜𝜔
2𝑠𝑖𝑛 (𝜔𝑡 − 𝜙) 

−𝐿𝐼𝑜𝜔
2𝑠𝑖𝑛 (𝜔𝑡 − 𝜙) + 𝑅𝐼𝑜𝜔𝑐𝑜𝑠 (𝜔𝑡 − 𝜙) + 𝐼𝑜/𝐶 𝑠𝑖𝑛 (𝜔𝑡 − 𝜙) =  𝑉𝑜 𝜔𝑐𝑜𝑠 𝜔𝑡 

(−𝐿𝜔2 +
1

𝐶
) 𝐼𝑜 𝑠𝑖𝑛 (𝜔𝑡 − 𝜙) + 𝑅𝐼𝑜𝜔𝑐𝑜𝑠 (𝜔𝑡 − 𝜙) =  𝑉𝑜 𝜔𝑐𝑜𝑠[( 𝜔𝑡 − 𝜙) + 𝜙] 

= 𝑉𝑜 𝜔[𝑐𝑜𝑠( 𝜔𝑡 − 𝜙)𝑐𝑜𝑠𝜙 − 𝑠𝑖𝑛( 𝜔𝑡 − 𝜙)𝑠𝑖𝑛𝜙] 

comparing the coefficients of 𝑠𝑖𝑛 (𝜔𝑡 − 𝜙)  and 𝑐𝑜𝑠 (𝜔𝑡 − 𝜙) both side 

(−𝐿𝜔2 + 1/𝐶)𝐼𝑜 = −𝑉𝑜 𝜔 𝑠𝑖𝑛𝜙              .……….(30) 

And 𝑅𝐼𝑜𝜔 = 𝑉𝑜 𝜔 𝑐𝑜𝑠𝜙   …………(31) 

dividing equation (30) and (31) 

tanϕ=
Lω2−1/C

R ω
 

=
Lω−1/ωC

R 
  (

reactance

resistance
) 

squaring and adding (31) and (31) 

[(−𝐿𝜔2 + 1/𝐶)2 + 𝑅2𝜔2] 𝐼𝑜
2 = 𝑉𝑜

2𝜔2 

orIo = 
𝑉𝑜

√(1/ ω C−Lω)2 + R2
 

Substituting this value in equation (29) 

I = 
𝑉𝑜

√(1/ ω C−Lω)2 + R2
sin (ωt − ϕ)…………..(32) 
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whereϕ = tan−1 (
Lω−1/ωC

R 
) 

This is the value of current at any instant. The amplitude of current is  

Io =  
𝑉𝑜

√(1/ ω C − Lω)2  +  R2
 

Lω is inductive reactance and denoted by XL, 1/ωC is the resistance produced in the circuit due 

to capacitor called capacitive reactance and denoted by XC, hence the quantity 

√(
1

ωC 
− Lω)2  +  R2 = √(XL − XC)2  + R2 

is called impedance of the circuit and represented by Z. The quantity (XL − XC) is called the 

resultant reactance of the circuit which is the difference between inductive reactance and 

capacitive reactance. Thus  

𝑍 = √(XL~XC)2  +  R2 

 
Figure 8 

 

it is clear from equ.(32) that current lags in phase from applied voltage by an angle 

𝜙 = tan−1 (
Lω − 1/ωC

R 
) 

 

or 𝜙 = tan−1 (
XL−XC

R 
) 

 

depending on the values of XL and XC, following three cases are arises 

1. When XL > XC, ϕ is positive so the net current in the circuit lags behind the 

applied voltage. 

2. When XL < XC, ϕ is negative so the net current leads the applied voltage. 
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3. When XL = XC, ϕ=0, and the current in the circuit is in phase with applied 

voltage. 

 
The last condition when XL = XC, the impedance of the circuit is becomes minimum Z= 

R, is called electrical resonance. Hence amplitude of the current is maximum. Thus at 

resonance XL=XC 

or  𝜔𝐿 =
1

𝜔𝐶
 

or 𝜔 =
1

√(𝐿𝐶)
 

if f is the frequency of current in the circuit, then ω=2πf 

2𝜋𝑓 =
1

√(𝐿𝐶)
 

𝑓 =
1

2𝜋√(𝐿𝐶)
= 𝑓0                        ……….….(33) 

where𝑓0 is resonance frequency when reactance of  the circuit is zero 

 

13.10.1 LCR series resonant circuit 

 
Figure 10 

A series LCR circuit has high inductive reactance at high frequency and high capacitive 

reactance at low frequency. In both cases impedance of the circuit is very high. At some 
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particular frequency impedance becomes minimum i.e.Z = R. If the values of R, L and C 

remains constant and frequency of applied voltage varies continuously from zero the current 

varies as shown in figure.  

 

Figure 11 

Initially current flows very slowly and increases to a maximum when the frequency increases to 

the resonance frequency then falls again. At resonance condition current in the circuit depends 

only on the value of R. In the figure three curves are plotted, for the values of resistance small, 

medium and large.The resonant current in the circuit is larger for the smaller values of resistance. 

The resonance is sharper for small value of resistance than for large resistance, however resonant 

frequency remains unchanged. 

 
This circuit is often called acceptor circuit because the impedance of the circuit is minimum at 

resonance so that it most readily accepts that current out of many currents whose frequency is 

equal to the natural frequency of the circuit. 
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From figure we have seen that at resonant frequency the amplitude of oscillating system becomes 

maximum. If the frequency of applied voltage is increased or decreased the amplitude falls from 

maximum value. The term sharpness of resonance refers to the rate of fall of amplitude with the 

change in the applied alternating source on either side of the resonant frequency. Sharpness of 

resonance is defined by Q factor, which is related to how quickly the energy of the oscillating 

system decays. 

𝑠ℎ𝑎𝑟𝑝𝑛𝑒𝑠𝑠 𝑜𝑓 𝑟𝑒𝑠𝑜𝑛𝑎𝑛𝑐𝑒 =
𝑓2 − 𝑓1

𝑓𝑜
 

13.10.2 Parallel resonant circuit  

When an alternating voltage is applied to a circuit having inductance L and resistance R in 

parallel with a capacitance C as shown in figure11. The peak value of the current in lower branch 

of the circuit is given by 

𝑖1 =
𝑉𝑜

√(𝑅2+𝑋𝐿
2)

                          …………(34) 

the peak current in capacitance is given by 

𝑖2 =
𝑉𝑜

𝑋𝑐
                         ………..(35) 

current i1 lags behind Vo by an angle ϕ and the current i2 leads Vo by 90o.The impedance if 

parallel circuit is given by  

𝑍 =
𝑉𝑜
𝑖𝑜

 

 

Figure 13 

The parallel circuit is said to be in resonance when the current io is in phase with the applied 

voltage Vo, and the current in the circuit does not depend on the value of capacitance and 

inductance circuit behaves like a pure resistance. 
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from the phase diagram for parallel circuit we can write 

𝑖𝑜 =  𝑖1 𝑐𝑜𝑠 𝜙                         …..……(36) 

𝑖2 = 𝑖1 𝑠𝑖𝑛 𝜙                         ………..(37) 

now since 𝑖1 =
𝑉𝑜

√(𝑅2+𝑋𝐿
2)

,    𝑖2 =
𝑉𝑜

𝑋𝑐
 𝑎𝑛𝑑     sin𝜙 =

𝑋𝐿

√(𝑅2+𝑋𝐿
2)

 

substituting these values in equ.(37) 

𝑉𝑜
𝑋𝑐

 =
𝑉𝑜

√(𝑅2 + 𝑋𝐿
2)

𝑋𝐿

√(𝑅2 + 𝑋𝐿
2)

 

or  

𝑋𝐿𝑋𝑐 = 𝑅2 + 𝑋𝐿
2 

𝜔𝐿

𝜔𝐶
= 𝑅2 + 𝜔2𝐿2 

1

𝐿𝐶
=

𝑅2

𝐿2
+ 𝜔2 

𝜔2 =
1

𝐿𝐶
−

𝑅2

𝐿2
 

𝑓 =
1

2𝜋
√

1

𝐿𝐶
−

𝑅2

𝐿2                           ……….(38) 

this is the resonant frequency of parallel LCR circuit. Now since frequency is a real quantity 

hence 

1

𝐿𝐶
>

𝑅2

𝐿2
 

or  𝑅2 <
𝐿

𝐶
 

or𝑅 < √
𝐿

𝐶
                        ………………(39) 

this is the requirement for a parallel circuit to be resonant. When r is very small the value of 
𝑅2

𝐿2
 is 

very less in comparison to 
1

𝐿𝐶
 the resonant frequency becomes 

𝑓 =
1

2𝜋
√

1

𝐿𝐶
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which is same as for the series resonant circuit. 

The impedance of the circuit is𝑍 =
𝑉𝑜

𝑖𝑜
 

now𝑖𝑜 =  𝑖1 𝑐𝑜𝑠 𝜙 

 

𝑖1 =
𝑉𝑜

√(𝑅2 + 𝑋𝐿
2)

 𝑎𝑛𝑑 cos𝜙 =
𝑅

√(𝑅2 + 𝑋𝐿
2)

 

hence   

𝑖𝑜 =
𝑉𝑜

√(𝑅2 + 𝑋𝐿
2)

𝑅

√(𝑅2 + 𝑋𝐿
2)

 

𝑖𝑜 =
𝑉𝑜𝑅

𝑅2 + 𝑋𝐿
2 

but 𝑅2 + 𝑋𝐿
2 = 𝑋𝐿𝑋𝑐 =

𝜔𝐿

𝜔𝐶
=

𝐿

𝐶
 

hence 𝑖𝑜 =
𝑉𝑜𝑅𝐶

𝐿
    ………..(40) 

and the impedance of the circuit is 𝑍 =
𝐿

𝐶𝑅
    …………(41) 

Now it is clear that impedance of the circuit is very high for small value of resistance R when 

𝑅 = 0 no current will be drawn by the circuit from source. Thus at resonance, circuit rejects the 

current of same frequency as the natural frequency of the circuit. That is why this circuit is called 

rejecter or filter circuit. 

 

Figure 14 
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Figure 14 is the frequency response curve for a parallel LCR circuit. Graph shows that the 

response starts at its maximum value, reaches its minimum value at the resonance frequency 

when IMIN = IR and then increases again to maximum as ƒ becomes very high. 

13.10.3 Quality factor of a circuit 

Reactive components such as capacitors and inductors are often described with a figure of merit 

called Q (quality factor). While it can be defined in many ways 

The quality factor of an oscillating electric circuit is defined as 2π times the ratio of the energy 

stored to the energy loss (energy dissipated) per period. i.e. 

𝑄 = 2𝜋
𝐸𝑛𝑒𝑟𝑔𝑦 𝑠𝑡𝑜𝑟𝑒𝑑

𝐸𝑛𝑒𝑟𝑔𝑦 𝑙𝑜𝑠𝑠 𝑝𝑒𝑟 𝑝𝑒𝑟𝑖𝑜𝑑 𝑎𝑡 𝑟𝑒𝑠𝑜𝑛𝑎𝑛𝑐𝑒
= 2𝜋

𝐸𝑆

𝐸𝐷
 

Energy loss per period is directly related to the damping. Hence less is the damping higher is the 

quality factor. 

This definition does not specify what type of system is required. Thus, it is quite general. For a 

LCR series circuit energy stored in the circuit is  

𝐸𝑆 =
1

2
𝐿𝐼2 +

1

2
𝐶𝑉𝐶

2………………..(42) 

for 𝑉𝐶 = 𝐴 𝑠𝑖𝑛 𝜔𝑡the current flowing in the circuit is 

𝐼 = 𝐶 
𝑑𝑉𝐶

𝑑𝑡
= ωCA cosωt 

The total energy stored in the reactive element is  

 

𝐸𝑆 =
1

2
𝐿𝜔2𝐶2𝐴2 cos2 𝜔𝑡 +

1

2
𝐶𝐴2 sin2 𝜔𝑡………………(43) 

 

At the resonance frequency where 𝜔 = 𝜔𝑜 =
1

√𝐿𝐶
, the energy stored in the circuit stored becomes  

𝐸𝑆 =
1

2
𝐿

1

𝐿𝐶
𝐶2𝐴2 cos2 𝜔𝑡 +

1

2
𝐶𝐴2 sin2 𝜔𝑡 

 

𝐸𝑆 =
1

2
𝐶𝐴2(cos2 𝜔𝑡 + sin2 𝜔𝑡) 

 

𝐸𝑆 =
1

2
𝐶𝐴2……………(44) 

the energy dissipated per period is equal to the average resistive power dissipated times the 

oscillation period T 
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𝐸𝐷 = 𝑅 < 𝐼2 > 𝑇 

𝐸𝐷 =
𝑅 < 𝐼2 >

𝑓
 

𝐸𝐷 = 𝑅 < 𝐼2 >
2𝜋

𝜔𝑜
= 𝑅 (𝜔𝑜

2
1

2
𝐶2𝐴2)

2𝜋

𝜔𝑜
= 2𝜋 (

1

2

𝑅𝐶

𝜔𝑜𝐿
𝐴2) 

𝐸𝐷 = 2𝜋 (
1

2

𝑅𝐶

𝜔𝑜𝐿
𝐴2)……….(45) 

with the help of equ. (44) and (45) putting the value of ES and ED in the definition of quality 

factor 

𝑄 = 2𝜋
𝐸𝑆

𝐸𝐷
 

𝑄 = 2𝜋

1
2𝐶𝐴2

2𝜋 (
1
2

𝑅𝐶
𝜔𝑜𝐿

𝐴2)
 

𝑄 =
𝜔𝑜𝐿

𝑅
=

1

𝜔𝑜𝑅𝐶
                               …………..(46) 

It is obvious that quality factor increases with decreasing R. 

The selectivity or Q-factor for a parallel resonance circuit is generally defined as the ratio of the 

circulating branch currents to the supply current and is given as: 

𝑄 =
𝑅

𝜔𝑜𝐿
= 𝜔𝑜𝑅𝐶                                  ……….(47) 

 

13.11 THE IDEAL TRANSFORMER 

A transformer is an electrical device that transfers electrical energy between two or more circuits 

through electromagnetic induction. A device that changes AC electric power at one voltage level 

to AC electric power at another voltage level through the action of a magnetic field.  
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Figure 15 

The core type transformer shown in figure 15. It consists two highly inductive coils which are 

electrically separated and magnetically linked through an iron core. If one coil is connected to 

source of alternating voltage an alternating magnetic flux is set up in core, which is shown in 

figure by rectangular shaded part, and this flux is linked with the other coil. Hence an induced 

alternating voltage is produced in the second coil. If second coil is closed, the current flow in it 

and so electric energy is transferred from first coil to second coil. The first coil in which electric 

energy is fed is called primary coil and the other from which energy is drawn out is called 

secondary coil. 

An ideal transformer is a theoretical, linear transformer that is lossless and perfectly coupled; 

that is, there are no energy losses and flux is completely confined within the magnetic core. 

Perfect coupling implies infinitely high core magnetic permeability and winding inductances and 

zero net magnetomotive force. 

 

Assumptions 

1. Relative permeability of core material, 𝜇𝑟 = ∞ 

2. Total magnetic flux linked with primary coil should be linked with secondary coil, 

i.e. flux loss = 0 

3. No core loss 

4. No winding loss 

 

13.11.1 Voltage relationship 

Whether voltage across secondary coil is more or less than voltage across primary coil depends 

on the turn ratio of the primary and secondary coils, i.e. 

𝑉𝑝 = 𝑁𝑝
𝑑∅

𝑑𝑡
 and 𝑉𝑠 = 𝑁𝑠

𝑑∅

𝑑𝑡
 

𝑉𝑝

𝑉𝑠
=

𝑁𝑝

𝑁𝑠
= 𝑛, 𝑐𝑎𝑙𝑙𝑒𝑑 𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑖𝑜 
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13.11.2 Current relationship 

If relative permeability of the transformer core 𝜇𝑟 = ∞ then the resistance of the core material 

𝑅𝑐𝑜𝑟𝑒 = 0 

𝑖𝑝𝑁𝑝 = 𝑖𝑠𝑁𝑠 

𝑖𝑝

𝑖𝑠
=

𝑁𝑠

𝑁𝑝
=

1

𝑛
 

It is obvious from above relations that a transformer which is step up for voltage is step down for 

current. If voltage is increased by ‘n’ times current reduces by a factor 1/n, because output power 

is equal to the input power for ideal transformer. It means that current ratio is reciprocal of 

voltage ratio. 

13.11.3 Impedance relationship 

Every transformer winding has its own resistance, inductive reactance hence impedance  

 
Figure 16 

𝑍𝑖𝑛 =
𝑉𝑝

𝑖𝑝
𝑎𝑛𝑑 𝑍𝑙𝑜𝑎𝑑 =

𝑉𝑠
𝑖𝑠

 

hence  
𝑍𝑖𝑛

𝑍𝑙𝑜𝑎𝑑
=

𝑉𝑝

𝑉𝑠

𝑖𝑠

𝑖𝑝
= (

𝑁𝑝

𝑁𝑠
)
2

= 𝑛2 

13.11.4 Power relationship 

The ideal transformer does not generate, dissipate, or store energy. Therefore the instantaneous 

power leaving the transformer is the same as that entering. This could be said in other words by 

saying that if one were to draw a box around an ideal transformer and sum the power flows into 

(or out of) the box, the answer is zero at every moment in time. 

𝑃𝑝 = 𝑉𝑝𝑖𝑝, 𝑃𝑠 = 𝑉𝑠𝑖𝑠 
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hence    
𝑃𝑝

𝑃𝑠
=

𝑉𝑝

𝑉𝑠

𝑖𝑝

𝑖𝑠
= 1 

13.12 SUMMARY 

In this chapter we studied the nature of alternating current in different electronic components 

(resistor, inductor and capacitor) and in their combinational circuits (LR, RC, LC and LCR). The 

relation between current and alternating potential shows that current is not always in phase with 

applied potential difference. Sometimes phase angle is positive and sometimes negative. The 

current in LCR series circuit is maximum when the natural frequency of the circuit is equal to the 

frequency of AC source and this condition is called resonance. While in parallel LCR circuit 

current is minimum at resonance. Hence the series LCR circuit is called acceptor circuit and 

parallel circuit is called rejecter circuit.  

13.13 GLOSSARY 

1. Impedance: net resistance produced by all the components in circuit 

2. Inductive reactance: resistance produced by induction coil 

3. Capacitive reactance: resistance produced by capacitor 

4. Resonance: the condition when maximum current flows in the circuit 
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Experiment No. 1 

 
Object: To convert Weston galvanometer into an ammeter of 1 amp/3 amp/ 100 μ amp 

range. 

 

Apparatus Used:  Weston galvanometer-1, accumulator-1,  high resistance box-1, voltmeter-

1, one ammeter of the same range as given for conversion, plug key-1, a rheostat, resistance 

wire and apparatus for determining the galvanometer resistance by Kelvin method (if the 

resistance of galvanometer is not given). 

Formula Used:  

The current sensitivity or figure of merit is given by- 

                                                Cs = 
E

n(R+G)
                                                                          .....(1) 

Where E = e.m.f. of the battery, R = resistance introduced (from Resistance Box, R.B.) in the 

circuit of galvanometer, n= deflection in galvanometer on introducing R in galvanometer 

circuit and G = galvanometer resistance. 

We can calculate the maximum current passing through the galvanometer for full scale 

deflection using the following formula- 

                                                              Ig = CsN                                                                .....(2) 

Where N is the total number of divisions on the scale of the galvanometer on one side of the 

zero of scale. 

Now, we can calculate the shunt resistance S required to convert the galvanometer into an 

ammeter by the following formula- 

                                                             S = 
Ig

I−Ig
G                                                             .....(3) 

Where Ig = the maximum current passing through the galvanometer for full scale deflection,  

            I = range of the ammeter in which the galvanometer is to be converted (1 amp/3 amp/      

                 100 μ amp) 

The length ‘l’ of the shunt wire can be calculated by the following formula- 

                                                              l = 
S

ρ
                                                                  .....(4) 

where S = shunt resistance as calculated by equation (3) 

           ρ = resistance per unit length of shunt wire 
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The length ‘l’ of the shunt wire can be calculated by using the formula,  l = 
πr2S

k
       .....(5) 

Where r is the radius of the wire used that can be find out using screw gauge and k the 

specific resistance of the material of the wire. The value of k can be taken from the table of 

constants. 

About apparatus:  

 To measure the strength of the current flowing in the circuit, an ammeter is used in 

series. In series, the whole current passes through the ammeter. The ammeter should have 

negligible resistance in order that it may not change the current in the circuit. An ideal 

ammeter has zero resistance. To convert a galvanometer into an ammeter of given range, we 

must determine experimentally the resistance of the galvanometer coil, the current sensitivity 

and the shunt in the following way- 

 Let Cs, N, Ig, I and S be the current sensitivity of the galvanometer, total number of 

divisions on the scale, the maximum current that passes through the galvanometer for the full 

scale deflection, range of the ammeter in which the galvanometer is to be converted and S the 

value of shunt required, then      Ig = CsN                      

                                            

  I             Ig                                                     I                  

                A                                                          B 

                                    (I-Ig) 

 

 

S 

                                                                  Figure 1 

Considering figure 1, the potential difference between points A and A is- 

                                                     VA – VB = (I - Ig) ×S = Ig × G 

Or                                                             S = 
Ig

I−Ig
G 

Where G is the galvanometer resistance. Knowing the value of the shunt, galvanometer can 

be converted into an ammeter of the given range I. 

 

 

G 
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Procedure: 

Determination of galvanometer resistance (G): 

If the value of galvanometer resistance is not given then it can be determined with the help of 

Kelvin’s method. 

Determination of the current sensitivity of the galvanometer (CS) 

(i) Set up the electrical circuit as shown in the following figure 2. 

                                                         

 +   -  

    E                  K 

 

 

 

 

                                                             Figure 2 

 

(ii) Using voltmeter, measure the e.m.f.  E of the accumulator (battery). Note down 

the initial reading of the galvanometer carefully and adjust the resistance box 

(R.B.) to a high value. 

(iii) Close the key K in the circuit and adjust the resistance box to get approximately 

the full scale deflection. Let R be the resistance in the resistance box to obtain n 

divisions deflection in galvanometer taking into account the zero reading. 

(iv) Now, calculate the current sensitivity ( or figure of merit) Cs using the formula- 

                                                       Cs = 
E

n(R+G)
 

(v) Again calculate Ig = CsN, where N is the total number of divisions on one side of 

the scale of galvanometer. 

Determination of shunt resistance (S) and length of the shunt wire (l) 

Shunt resistance S = 
Ig

I−Ig
G, where I is the range of the ammeter in which the given 

galvanometer is to be converted. 

Length of the shunt wire    l = 
S

ρ
 , where ρ is the resistance per unit length of the wire used 

for shunt 

R.B. 

G 
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Or     l = 
πr2S

k
 , where r is the radius of the wire used that can be find out using screw 

gauge and k the specific resistance of the material of the wire. The value of k can be 

taken from the table of constants. For copper, k = 1.78 × 10-6 ohm. 

Calibration of the converted galvanometer 

    Now let us calibrate the converted galvanometer as follows- 

(i) Set up the electrical circuit as shown in figure 3. 

 

          Rh                                   K          + E - 

 

 

 

 

 

 

 

 

                         Shunt 

                                             Figure 3 

(ii) For a particular setting of Rh, close the key K and note down the ammeter and 

galvanometer readings. 

(iii) Now convert the galvanometer reading into amperes and find the difference 

between the readings of the two instruments. 

(iv) Now, change the value of Rh and repeat the above procedure till the entire range 

of the converted galvanometer is covered. 

(v) Plot a graph taking converted galvanometer readings as abscissa and 

corresponding ammeter readings as ordinates. The graph is shown in figure 4. 

                               Y 

 

 

                             

   

              Ammeter readings 

 

 

 X 

 Converted galvanometer reading 

Figure 4 

G A 
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Observations: 

Determination of galvanometer resistance (G) 

If the value of galvanometer resistance is not given then it can be determined with the help of 

Kelvin’s method. Note down the observations for Kelvin’s method for the determination of 

galvanometer resistance. 

Galvanometer resistance G = .............ohm 

Determination of Ig 

E.M.F. of the battery E = ...........volt 

No. of divisions on one side of zero of scale on the galvanometer N = ........... 

S.No. Resistance 

introduced in 

resistance box R 

(ohms) 

Deflection in 

galvanometer 

n 

Current 

sensitivity  Cs 

Ig = CsN (amp) Mean Ig 

(amp.) 

1      

2     

3     

 

Calibration of shunted galvanometer 

S.No. Reading of shunted galvanometer Ammeter reading I’ 

(amp) 

Error (I-I’) amp 

In division In ampere I 

1     

2     

3     

4     

5     

6     

7     

 

Calculations: 

The current sensitivity or figure of merit  Cs = 
E

n(R+G)
      = ............. 

The maximum current passing through the galvanometer for full scale deflection Ig = CsN  

                                                                                                                 = ......... amp 

Shunt resistance     S = 
Ig

I−Ig
G  = .................ohm 

Length of shunted wire   l = 
πr2S

k
  = ..............cm 
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Result:  

The length of the shunt wire of SWG .............required to convert the given galvanometer into 

an ammeter of range of .......... amp. = .............cm. 

Precautions and Sources of Errors: 

(1) The battery/accumulator used should be fully charged. 

(2) All connections should tight. 

(3) The initial readings of galvanometer and ammeter should be at zero mark. 

(4) While connecting the shunt exact length should be connected in parallel to the 

galvanometer. 

(5) All the readings should take carefully. 

---------------------------------------------------------------------------------------------------------------- 

Objectives: After performing this experiment, you should be able to- 

 understand current sensitivity or figure of merit 

 understand about shunt 

 calculate length of shunted wire 

VIVA-VOCE: 

Question 1. What is an ammeter? 

Answer.  An ammeter is an instrument designed to read current flowing in an electrical 

circuit. It is connected in series with circuit. 

Question 2.  What will happen if the ammeter is connected in parallel to the circuit? 

Answer.  It will measure only the fraction or part of the current flowing through it and not 

the total current. 

Question 3. The resistance of an ammeter is kept low, why? 

Answer. If the resistance of an ammeter is kept high, it will change the value of the current in 

the circuit.  

Question 4. How is the resistance of an ammeter made low? 

Answer.  It is done by connecting a low resistance (shunt) in parallel with galvanometer. 

Question 5. A galvanometer as such cannot be used as an ammeter, why? 

Answer. A galvanometer as such cannot be used as an ammeter due to the following reasons- 

(i) The resistance of the galvanometer coil is appreciable. 

(ii) It can measure only a limited current corresponding to the maximum 

deflection on the scale. 

Question 6. How do you convert a galvanometer into an ammeter? 
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Answer. According to the range of the ammeter, we find the resistance of shunt, then from 

resistance we find the length of shunt to be connected in parallel with the 

galvanometer. 

Question 7. Can you change the range of ammeter? If yes, how? 

Answer. Yes, we can change the range of ammeter by changing the resistance of shunt. 
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Experiment No. 2 

 
Object: To convert Weston galvanometer into a voltmeter of 50 volt/ 3 volt range. 

 

Apparatus Used:  Weston galvanometer-1, accumulator-1, high resistance box-1, one 

voltmeter of the same range as given for conversion, plug key-1, a rheostat and apparatus for 

determining the galvanometer resistance by Kelvin method (if the resistance of galvanometer 

is not given). 

Formula Used: The current sensitivity or figure of merit is given by- 

                                               Cs = 
E

n(R+G)
                                                                          .....(1) 

Where E = e.m.f. of the battery, R = resistance introduced (from Resistance Box, R.B.) in the 

circuit of galvanometer, n= deflection in galvanometer on introducing R in galvanometer 

circuit and G = galvanometer resistance. 

We can calculate the maximum current passing through the galvanometer for full scale 

deflection using the following formula- 

                                                              Ig = CsN                                                                .....(2) 

where N is the total number of divisions on the scale of the galvanometer on one side of the 

zero of scale. 

To convert the galvanometer into a voltmeter of a given range, the series resistance R 

required for it is given by- 

                                                                   R = 
V

Ig
− G                                                       .....(3) 

About apparatus:  

 A voltmeter is used to measure the potential difference between two points in an 

electrical circuit. It is always connected in parallel to the branch across which the potential is 

to be measured. It must have a high resistance so that it may not draw appreciable current 

otherwise the current in the circuit will decline, resulting in the fall of potential difference to 

be measured. Thus ideal voltmeter should have infinite resistance. A moving coil 

galvanometer cannot be used as a voltmeter because its resistance is not very high. Its 

resistance is made high by placing a high resistance in series with the galvanometer. The high 

resistance can be planned as follows- 

 Let G, Ig and V be the galvanometer resistance, maximum current in the galvanometer 

for full scale deflection (Figure1). 

Applying Ohm’s law in figure 1, we can write- 

Ig(R+G) = V 
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                                                               R 

 

                          Ig                                                                  

                                                                                

                                                                           

                     V 

Figure 1 

 

 

 Ig R + Ig G = V              or            Ig R = V - Ig G 

Or                             R = 
V

Ig
 – G 

Using above equation, resistance R can be calculated. 

Procedure: 

Determination of galvanometer resistance (G): 

If the value of galvanometer resistance is not given then it can be determined with the help of 

Kelvin’s method. 

Determination of the current sensitivity of the galvanometer (CS) 

(i) Set up the electrical circuit as shown in the following figure 2.                                      

 +   -  

    E                  K 

 

 

 

 

                                                             Figure 2 

 

G 

R.B. 

G 
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(ii) Using voltmeter, measure the e.m.f.  E of the accumulator (battery). Note down 

the initial reading of the galvanometer carefully and adjust the resistance box 

(R.B.) to a high value. 

(iii) Close the key K in the circuit and adjust the resistance box to get approximately 

the full scale deflection. Let R be the resistance in the resistance box to obtain n 

divisions deflection in galvanometer taking into account the zero reading. 

(iv) Now, calculate the current sensitivity ( or figure of merit) Cs using the formula- 

                                                       Cs = 
E

n(R+G)
 

(v) Again calculate Ig = CsN, where N is the total number of divisions on one side of 

the scale of galvanometer. 

 

Determination of series resistance 

Using formula, R = 
V

Ig
 – G, we can calculate the series resistance R required to change the 

galvanometer into voltmeter of the given range of V volt that is, if we want to convert 

galvanometer into a voltmeter of range 50 volt then V = 50 volt. 

 

Calibration of the converted galvanometer 

 

                                  + E -              K 

  

                                           Rh                                                  

 

  R 

 +            - 

                                                               Figure 3 

 

(i) Let us set up the electrical connections as shown in figure (2). The two base 

terminals of a rheostat Rh are connected in series with a battery E and key K. The 

galvanometer together with its series resistance (introduce a resistance box) is 

connected in parallel to the rheostat Rh. Between the same points, a voltmeter is 

also connected. 

(ii) Now we shift the position of the sliding contact on the rheostat and take a number 

of readings in galvanometer and voltmeter respectively. We convert the 

galvanometer reading in volt and calculate the error between the two readings. 

V 

G R.B. 
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(iii) We plot a graph between converted galvanometer reading in volt and 

corresponding reading in voltmeter. You will see that the graph is a straight line as 

shown in figure 4. 

 

 

 

  Y 

 

 

                             

   

              Voltmeter readings 

 

 

 X 

 Converted galvanometer reading 

Figure 4 

Observations:  

Determination of galvanometer resistance (G) 

If the value of galvanometer resistance is not given then it can be determined with the help of 

Kelvin’s method. Note down the observations for Kelvin’s method for the determination of 

galvanometer resistance. 

Galvanometer resistance G = .............ohm 

Determination of Ig 

E.M.F. of the battery E = ...........volt 

No. of divisions on one side of zero of scale on the galvanometer N = ........... 

S.No. Resistance 

introduced in 

resistance box R 

(ohms) 

Deflection in 

galvanometer 

n 

Current 

sensitivity  Cs 

Ig = CsN (amp) Mean Ig 

(amp.) 

1      

2     

3     
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Calibration of shunted galvanometer 

S.No. Reading of shunted galvanometer Ammeter reading I’ 

(amp) 

Error (I-I’) amp 

In division In ampere I 

1     

2     

3     

4     

5     

6     

7     

 

Calculations: 

The current sensitivity or figure of merit Cs = 
E

n(R+G)
      = ............. 

The maximum current passing through the galvanometer for full scale deflection Ig = CsN  

                                                                                                                 = ......... amp 

Series resistance required R = 
V

Ig
 – G =   ..... ohm 

Result:  

The resistance required to convert the given galvanometer into voltmeter of range of ........ 

volt is ...... ohms. 

Precautions and Sources of Errors: 

(1) The battery/accumulator used should be fully charged. 

(2) All connections should tight. 

(3) The initial readings of galvanometer and ammeter should be at zero mark. 

(4) While connecting the shunt exact length should be connected in parallel to the 

galvanometer. 

(5) All the readings should take carefully. 

---------------------------------------------------------------------------------------------------------------- 

Objectives: After performing this experiment, you should be able to- 

 understand current sensitivity or figure of merit 

 understand about resistance 

 calculate the resistance required. 
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VIVA-VOCE: 

Question 1. What is an voltmeter? 

Answer.  A voltmeter is an instrument designed to read potential difference between two 

points directly in volts, when connected across those points. It is connected in 

parallel. 

Question 2.  What should be the resistance of a voltmeter? Why? 

Answer. The resistance of a voltmeter should be high so that it may not draw appreciable 

current otherwise the current in the circuit will decline, resulting in the fall of 

potential difference to be measured. 

Question 3. A moving coil galvanometer cannot be used as a voltmeter, why? 

Answer. A moving coil galvanometer cannot be used as a voltmeter because its resistance is 

not very high. Its resistance is made high by placing a high resistance in series with 

the galvanometer. 

Question 4. What is the resistance of an ideal voltmeter? 

Answer.  The resistance of an ideal voltmeter is infinite. 

Question 5. How can you convert a galvanometer into voltmeter? 

Answer. As per the range of the voltmeter, we find the value of high resistance that is to be 

connected in series with galvanometer resistance. 
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Experiment No. 3 

 
Object: To determine the electrochemical equivalent of copper and reduction factor of a 

Helmholtz galvanometer. 

 

Apparatus Used: Copper voltameter, test plate, Helmholtz galvanometer, accumulator, 

commutator, connection wires, chemical balance and weight box  

Formula Used: If we set the plate of the Helmholtz galvanometer coil in the magnetic 

meridian and electric current i ampere is allowed to flow through it, then- 

                                                               i = 
50√5rH

32πN
tanθ                                                   .....(1) 

Here, r = radius of the coil, H = Earth’s magnetic field’s horizontal component, n = number 

of turns of either of the coils of Helmholtz galvanometer 

If the same electric current is allowed to pass through a copper voltameter connected in series 

with Helmholtz galvanometer, then from Faraday’s law of electrolysis, we have- 

                                                                   m = z i t 

Here, m = mass of the copper deposited on cathode plate, t = time (sec) for which the current 

passes, i = magnitude of the electric current, z = electrochemical equivalent of copper ion 

From the above relation, we have- 

                                                                      z = 
m

it
                                                            .....(2) 

Putting for i from equation (1) in equation (2), we get- 

                                                               z = 
32 m π n

50√5rH tanθ×t
 

Thus, using the above relation, we can calculate the electrochemical equivalent of copper ion. 

The reduction factor of Helmholtz galvanometer is given as- 

                                                                   k = 
m

z t tanθ
 

Procedure: 

(i) First of all, we should clean the cathode plate carefully with sandpaper and weigh it 

with the help of chemical balance. 

(ii) Keep the coils in the magnetic meridian and rotate the compass box to make the 

pointer read zero-zero. 

(iii) Set up electrical connections as shown in following figure (1). Using copper test 

plate as cathode, allow electric current to pass in the circuit and read and note 

down the deflection. Now, with the help of commutator reverse the direction of 
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electric current and again read and note down the deflection. Check whether the 

two deflections are same, if the two deflections are same then the coils are in the 

magnetic meridian otherwise we should rotate the coils slightly till the two 

deflections are the same. The pointer should read zero when no electric current is 

passed. 

 

                                       +     -           Key 

 

                            Rh 

 

       +             -     Commutator  

 

 

                                                                                   Helmholtz Galvanometer 

  

 

 

 

 

 

                                                Figure 1 

 

(iv) With the help of rheostat Rh, we adjust the deflection say within 45o to 50o. 

(v)  Now switch off the current and remove the test plate. Now put the previously 

weighed plate to act as cathode. 

(vi) We switch on the electric current and at once start the stop watch. We note down 

the deflection after a regular interval of 5 minutes and keep it constant with the 

help of rheostat. After fifteen and twenty minutes, we reverse the current and note 

the deflection. At the end of other half of time, we switch off the current and note 

down the reading of stop watch. 

(vii) Now we remove the copper plate from voltameter and immerse the plate in water 

and then press it between the sheets of filter paper to soak the water. Now we dry 

it with the help of cold air blower and weigh it with chemical balance. 

(viii) To measure the diameter of the coil, we measure the circumference and calculate 

radius by equating to 2π r. We measure both external and internal circumference 

and calculate the mean of the radius. We take this as r. 

Observations: 

Value of the magnetic field H =   ............    oersted 

Radius of the coil  r = .......   cm. 

Number of turns in each coil  n = ........... 
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Table for  the measurement of m and t: 

S.No. Quantities measured Amount 

(gm.) 

Calculated quantities from 

observations 

1 Mass of the copper plate before 

deposition of  copper 

 

............ Mass of copper deposited m = ...... gm 

 

 

 

 

 

Total time t taken = ..... sec. 

2 Mass of the copper plate after 

deposition of copper 

........... 

3 Initial reading of stop watch 

 

.......... 

4 Find reading of stop watch 

 

........... 

 

Table for the determination of θ: 

Time 

(minutes) 

Deflection of pointer for 

direct current 

Deflection of pointer for 

reverse current 

Mean tan θ 

Left end 

θ1 

 

Right end θ2 

 

Left end θ3 Right end θ4 

0 450 450 450 450  

 

 

450 

 

 

 

....... 

5     

10     

15     

20     

25     

 

Calculation: 

The electrochemical equivalent of copper ion, z = 
32 m π n

50√5rH tanθ×t
  = ...........   gm./Coulomb 

The reduction factor of Helmholtz galvanometer,  k = 
m

z t tanθ
 =  ...........   amp. 

Result: The electro-chemical equivalent of copper =  ............  gm./Coulomb and the 

reduction factor of Helmholtz galvanometer = ....... amp. 

Precautions and Sources of Errors: 

(1) The galvanometer coils should be set in magnetic meridian carefully. 

(2) The deflection of the galvanometer should be kept constant with the help of rheostat. 

(3) The electric current passed in the coils should be of such a value as to produce a 

deflection of nearly 450. 

(4) The middle plate should be made cathode. 

(5) All readings should be taken carefully. 
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---------------------------------------------------------------------------------------------------------------- 

Objectives: After performing this experiment, you should be able to- 

 understand and compute electrochemical equivalent 

 understand and compute reduction factor of Helmholtz galvanometer 

 understand Helmholtz galvanometer 

VIVA-VOCE: 

Question 1. What is an electrolyte? 

Answer.  An electrolyte is a solution which conducts the electricity through it. 

Question 2.  What is chemical equivalent?  

Answer. Chemical equivalent is equal to atomic weight/valency i.e. same as equivalent 

weight. 

Question 3. What is electrochemical equivalent? 

Answer. Electrochemical equivalent is the mass of substance liberated by the passage of 1 

coulomb of electric charge. 

Question 4. What is reduction factor? What is its unit? 

Answer.  The reduction factor is the current required to produce a deflection of 450 in tangent 

galvanometer. Its unit is ampere. 

Question 5. On what factors reduction factor depends? 

Answer. The reduction factor depends on the following factors- 

(a) Number of turns in the coil 

(b)  Radius of the coil 

Question 6. How does reduction factor depend on number of turns in the coil and radius of 

the coil? 

Answer.  Reduction factor decreases with increase in number of turns in the coil and 

increases by increasing the radius of the coil. 

Question 7. Why H2So4 is added in the solution? 

Answer. Addition of H2So4 furnishes additional ions in the solution and thus increases its 

conductivity. 
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Experiment No. 4 

 
Object: To study the resonance in series LCR circuit with a source of given frequency (A.C. 

mains). 

 

Apparatus Used: Inductance of  10 H, resistance of 1 KΩ, variable condenser unit ( values 

in μF), an auto transformer, 4- A.C. voltmeters of suitable ranges. 

Formula Used: In series LCR circuit, the current is given as- 

                                                    i = 
E

√R2+(ωL− 
1

ωC
)
2
 

where E = voltage, R = resistance, L = inductance, C = capacitance, ω = frequency of A.C. 

mains 

At resonance, ωL = 1/ωC and if ir be the electric current at resonance then 

                                                               ir ωL = ir/Ωc 

                                                                VL = VC  

Combined potential difference across C and L i.e. VCL should be zero but never found such in 

practice due to choke coil resistance.VCL is minimum at resonance. 

                                                          Auto Transformer 

 

 

 

                                     C                          L                                     R 

                                         0.1-2 μf          10 H                              1KΩ 

 

 

                                                                       Figure 1 

At resonance, impedance is minimum and consequently current is maximum. It means that 

voltage VR = ir R should also be maximum. Thus at resonance- 

(1) VL = VC 

(2) VCL is minimum and 

(3) VR is maximum 

 

VCL 

VC VL 
VR 
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Procedure: 

(i) We make electrical connections as shown in figure 1. 

(ii) Keep the value of C equal to 0.1 μf and note down the readings of four voltmeters 

giving VC, VL, VR and VCL . 

(iii) By changing the values of capacity in regular steps of 0.1 μF, we take some sets of 

observations. 

Observations: 

Table for the measurement of VC, VL, VR and VCL  

S.No. Capacitance 

introduced in the 

circuit C (μF) 

Voltage 

across C, VC 

(volt) 

Voltage 

across L, VL 

(volt) 

Voltage 

across R, VR 

(volt) 

Voltage 

combined 

across C and 

L, VCL (volt) 

1 0.1     

2 0.2     

3 0.3     

4 0.4     

5 0.5     

 

Calculations: 

Values of VL, VC, VR and VCL are plotted as a function of C in figure 2 and 3. 

  

        VC & VL(volt)                                                       VR & VCL (volt) 

 

                        VL  VR 

                                        VC 

                          

                                                                                                                                               VCL 

 

               C(μF)                                                                   C(μF) 

 

      Resonant value of C                                    Resonant value of C 

                                              Figure 2                                                     Figure 3 
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Result: From figure 2, resonant value of capacitance C =  ...........   μF 

From figure 3, resonant value of capacitance C =  ........  μF 

We also find that at resonance- 

(i) VL = VC  

(ii)  VR is maximum and   

(iii) VCL is minimum 

Precautions and Sources of Errors: 

(1) All the electrical connections should be tight. 

(2) Suitable values of capacitance should be chosen. 

(3) All readings should be taken carefully. 

 

---------------------------------------------------------------------------------------------------------------- 

Objectives: After performing this experiment, you should be able to- 

 understand resonance 

 understand and compute the resonant value of C 

 

VIVA-VOCE: 

Question 1. What is the relation between the frequency of applied voltage and natural 

frequency of the circuit in a series resonant circuit? 

Answer.  In a series resonant circuit, the frequency of the applied voltage is equal to the 

natural frequency of the circuit. 

Question 2.  What is the name of a series resonant circuit and why?  

Answer. A series resonant circuit gives voltage-amplification. Hence it is also called voltage 

resonant circuit. 

Question 3. When a series LCR A.C. circuit is brought into resonance, the current has a large 

value, why? 

Answer. The current in  series LCR A.C. circuit is -                                                   

                                                           i = 
E

√R2+(ωL− 
1

ωC
)
2
 

At resonance, ωL = 
1

ωC
; the denominator in the above equation i.e. impedance of the circuit 

decreases and hence the current increases. 
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Question 4. In an A.C. resonant circuit, L,C and R are connected in series. What is the 

expression for the frequency of the oscillatory circuit? 

Answer.  f = 
1

2𝜋√𝐿𝐶
, provided R is small. 

Question 5. When are the voltage and electric current in LCR series A.C. circuit in phase? 

Answer. At resonance 
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Experiment No. 5 

 
Object: To determine the mass susceptibility of NiSO4 solution. 

Apparatus Used: Electromagnet, search coil, standard solenoid, battery, ammeter, rheostat, 

key, travelling microscope, commutator, ballistic galvanometer 

Formula Used: The magnetic field H between the pole pieces of an electromagnet is given 

by- 

                                                         H = 
8πnir1

2n2θ1

10r2
2n1θ2

                                                           .....(1) 

Where n = Number of turns per unit length in primary of solenoid, n1 = number of turns in 

the search coil, n2 = total number of turns in the secondary of the solenoid, i = electric current 

in amperes flowing in the primary, r1 = radius of the secondary of solenoid, r2 = radius of the 

search coil, θ1 = first throw in ballistic galvanometer when search coil is withdrawn from 

electromagnet, θ2 = first throw in ballistic galvanometer due to electric current i in the 

primary of solenoid 

The mass susceptibility of solution is given by- 

                                                             χsolution = 
X

ρ
= 

4gh

H2                                                                             .....(2) 

where h = rise of the liquid in uniform bore tube kept inside field, H = field between pole 

pieces 

Procedure:  

(i) We set the galvanometer and lamp and scale arrangement such that the spot of 

light is free to move on both sides of zero of the scale. We make electrical 

connections as shown in figure 1. 

(ii) We allow a suitable electric current to pass in the electromagnet. 

(iii) We place the search coil in between the pole pieces of the electromagnet with the 

face of the coil perpendicular to the magnetic lines of force. In this position, the 

spot of light should be on the zero of the scale. 

(iv) Now we withdraw the search coil rapidly from electromagnet and note down the 

first throw θ1. 

(v) We repeat the above procedure for different currents in electromagnet. 

(vi) Now we pass suitable currents in the primary of the solenoid and with the help of 

the commutator and find out the corresponding throws θ2. We find magnetic field 

values H for currents passed in the electromagnet. 

(vii) We prepare NiSO4 solution and fill it in a U-tube of uniform bore. We put this 

tube in between the pole pieces such that the surface of solution may be in the 

centre of the space between poles of electromagnet. We take the reading for 

surface of the solution with the help of travelling microscope. 
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Search Coil 

 

Electromagnet                                                                    Secondary of solenoid 

 

 

 

 

 

                               B                                      Rh 

                      +                    -                                                                   K1 

 

                                                             Figure 1 

         Search Coil 

                           Secondary 

 

 

                                   R       B             R       B  Electromagnet        Primary 

 

 

 

 

 

   A                              Key 

                                         10 Ohm  

                                                                    

                                                              Figure 2 

G 

A 
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                                                                         Figure 3 

(viii) We send the same currents in electromagnet for which the magnetic fields are 

calculated. We measure the rise of liquid column in each case. 

(ix) We calculate the volume susceptibility of NiSO4 solution. 

Observations: 

Radius of the search coil r2 = ....... cm. 

Radius of the secondary of the solenoid r1 =  .......  cm. 

Number of turns in the search coil n1 = ............ 

Number of turns in the secondary of solenoid n2 = ........ 

Number of turns per unit length in the primary of solenoid n = ............ 

Weight of NiSO4 =  ......... gm. 

Volume of water  =   .......... c.c. 

Total volume =  .........c.c. 

Weight of solution =  ..........gm. 

Density of NiSO4 =  ........... gm./c.c. 

Table for first throw θ1 when search coil is withdrawn from electromagnet 

S.No. Current passed through the 

electromagnet I (amp) 

Corresponding throw θ1 (cm.) 

1 2  

2 3  

3 4  

4 5  

5 6  

6 7  

 

         N       S 
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Table for first throw θ2 when current is passed in the primary of solenoid 

S.No. Current in the primary of solenoid i 

(amp) 

Corresponding throw θ2 (cm.) 

1 0.8  

2 0.7  

3 0.6  

4 0.5  

5 0.4  

6 0.3  

Table for the rise of the liquid 

Least count of microscope =  ......  cm. 

S.No. Current in 

electromagnet I 

(amp.) 

Position of liquid 

when field is OFF 

(a) cm. 

Position of the 

liquid when field 

is ON (b) cm. 

h = (b – a) cm. 

1     

2     

3     

4     

5     

6     

 

Calculations: 

Let us draw a graph between different currents passed in the primary of the solenoid and the 

corresponding observed throws. The nature of the graph is shown in figure 4. We find the 

value of i/θ2 from the graph. 

 

 

 

                          θ2 

 θ2 

                                                                          i                                 

  

     i 

Figure 4 
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Now we use the formula H = 
8πnir1

2n2θ1

10r2
2n1θ2

, to calculate the value of the magnetic field for 

different currents passed in the electromagnet. 

Value of the field for I = 2 amp. θ1 = ...... cm. is- 

                                              H = 
8πnir1

2n2θ1

10r2
2n1θ2

 =  ....... Gauss 

Value of the field for I = 3 amp. θ1 = ...... cm. is- 

                                              H = 
8πnir1

2n2θ1

10r2
2n1θ2

 =  ....... Gauss 

Similarly, we calculate the value of field for 4, 5, 6 and 7 amps. 

Now   χsolution = 
X

ρ
= 

4gh

H2              

= 
4g (rise of liquid at 2 amp.)

(value of magnetic field for 2 amp.)2
    =       ............... 

Similarly, we calculate   χsolution for 3, 4, 5, 6 and 7 amps. 

Result:    The value of    mass susceptibility of NiSO4 solution =  ........                                                    

Precautions and Sources of Errors: 

(1) Tapping key should be used across the galvanometer. 

(2) The galvanometer coil should be made properly free. 

(3) The distance between the pole pieces should be constant. 

(4) The search coil should be kept in the gap of the pole pieces such that its face is 

parallel to the face of the pole pieces or perpendicular to the magnetic field lines. 

(5) The resistance R of the galvanometer circuit should remain the same. 

(6) Search coil should be withdrawn quickly from the electromagnet. 

---------------------------------------------------------------------------------------------------------------- 

Objectives: After performing this experiment, you should be able to- 

 understand electromagnet 

 understand search coil 

 understand mass susceptibility 

 compute mass susceptibility 

 

VIVA-VOCE: 

Question 1. What is the construction of electromagnet? 

Answer.  A copper coil is wound over continuous soft iron core in such a way that one end of 

the core becomes South Pole while the other the North Pole. 

Question 2.  What is the construction of search coil?  
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Answer. Search coil consists few number of turns of thin insulated copper wire. Due to few 

turns galvanometer deflection remains within the range of scale.  

Question 3. Define susceptibility of a substance. 

Answer.  Susceptibility is defined as the ratio of intensity of magnetisation (I) to the 

magnetising field (H). Thus, χ = 
I

H
. 

Question 4. What is the unit of susceptibility? 

Answer.  Susceptibility is unit less quantity. 

 

Physical Constants 

Universal Gravitational Constant G = 6.67 × 10-11 Newton-m2/kg2 

Boltzmann Constant kB = 1.38 × 10-23 Joule/K 

Planck ’s constant h= 6.63 × 10-34 Joule-sec 

Charge on electron e = 1.6 × 10-19 Coulomb 

Velocity of light in vacuum c = 3 × 108 m/sec2 

Mass of electron me = 9.1083 × 10-31 Kg 

Mass of proton mp = 1.67399 × 10-27 Kg 

 

 

 

 

 

 


