

Introduction to Programming using C Page 1

Title Introduction to Programming using C

Author Brian “Beej” Hall

Adaption and Typesetting Balam Singh Dafouti

Academic Consultant- School of CS & IT,

Uttarakhand Open University, Haldwani

ISBN:

Acknowledgement
This book has been adapted from “Beej's Guide to C Programming” by Brian “Beej”
Hall. The University also acknowledges with thanks to KKHSOU for providing the
study material on http://www.kkhsou.in/web_new/index.php portal a Creative
Commons Attribution-Non Commercial-Share Alike 4.0
License (international): http://creativecommons.org/licenses/by-nc-sa/4.0/

 Uttarakhand Open University, 2020

This work by Uttarakhand Open University is licensed under a Creative Commons

Attribution--Share Alike 3.0 United States License. It is attributed to the sources marked

in the References, Article Sources and Contributors section.

Published By: Uttarakhand Open University

http://www.kkhsou.in/web_new/index.php
http://creativecommons.org/licenses/by-sa/4.0/

Introduction to Programming using C Page 2

Introduction to Programming using C

MCS-101

BLOCK I

Unit 1: Programming Building Blocks: Specification, Implementation , Hello, World!

Example.

Unit 2: Variables, Expressions, and Statements: Variables, Operators, Expressions,

Statements.

Unit 3: Functions: Passing by Value, Function Prototypes.

Unit 4: Variables: Up Scope, Storage Classes

BLOCK II

Unit 5: Pointers: Memory and Variables, Pointer Types, Dereferencing, Passing

Pointers as Parameters.

Unit 6: Structures: Pointers to structs, Passing struct pointers to functions.

Unit 7: Arrays: Passing arrays to functions.

Unit 8: Strings

Unit 9: Dynamic Memory: malloc(), free(), realloc(), calloc().

BLOCK III

Unit 10 Advance Topics: Pointer Arithmetic, typedef, enum, More struct declarations,

Command Line Arguments, Multidimensional Arrays, Casting and promotion,

Incomplete types, void pointers, NULL pointers, More Static, Typical Multifile

Projects, The Almighty C Preprocessor, Pointers to pointers, Pointers to Functions,

Variable Argument Lists.

Unit 11. Standard I/O Library: fopen(), freopen(), fclose(), printf(), fprintf(), scanf(),

fscanf(), gets(), fgets(), getc(), fgetc(), getchar(), puts(), fputs(), putc(), fputc(),

putchar(), fseek(), rewind(), ftell(), fgetpos(), fsetpos(), ungetc(), fread(), fwrite(),

feof(), ferror(), clearerr(), perror(), remove(), rename(), tmpfile(), tmpnam(), setbuf(),

setvbuf(), fflush().

Unit 12. String Manipulation: strlen(), strcmp(), strncmp(), strcat(), strncat(), strchr(),

strrchr(), strcpy(), strncpy(), strspn(), strcspn(), strstr(), strtok().

Unit 13: Mathematical Functions: sin(), sinf(), sinl(), cos(), cosf(), cosl(), tan(),

tanf(), tanl(), asin(), asinf(), asinl(), acos(), acosf(), acosl(), atan(), atanf(), atanl(),

atan2(), atan2f(), atan2l(), sqrt().

Suggested Readings:

1. Let us C-Yashwant Kanetkar.

2. Programming in C- Balguruswamy

3. The C programming Lang., Pearson Ecl – Dennis Ritchie

4. Structured programming approach using C-Forouzah & Ceilberg Thomson learning

publication.

5. Pointers in C – Yashwant Kanetkar

Supplementary Course Material available at: http://www.freetechbooks.com/beejs-

guide-to-c-programming-t986.html

Introduction to Programming using C Page 3

Block-1

Unit-1

Programming Building Blocks

1.1 Learning Objectives

1.2 Introduction

1.3 Programming Building Block

1.3.1 The Specification

1.3.2 The implementation

1.4 Answer to check your Progress

1.5 Model Questions

Introduction to Programming using C Page 4

1.1 Learning Objectives

After going through this unit the learner able to learn:

• The Programming building block

• Variable, Operators, Expression and Statements

• Function: Passing by value and function prototypes

1.2 Introduction

The C programming language is a computer programming language

that was developed to do system programming for the operating system

UNIX and is an imperative programming language. C was developed in

the early 1970s by Ken Thompson and Dennis Ritchie at Bell Labs. It is

a procedural language, which means that people can write their programs

as a series of step-by-step instructions. C is a compiled language.

C is available for many different types of computers. This is why C is

called a "portable" language. A program that is written in C and that

respects certain limitations can be compiled for many different

platforms.

1.3 Programming building block

What is programming, anyway? I mean, you're learning how to

do it, but what is it? Well, it's, umm, kind of like, well, say you have this

multilayered chocolate and vanilla cake sitting on top of an internal

combustion engine and the gearbox is connected to the coil with a

banana.

Now, if you're eating the cake a la mode, that means... Wait. Scratch that

analogy. I'll start again.

What is programming, anyway? It's telling the computer how to perform

a task. So you need two things (besides your own self and a computer) to

get going. One thing you need is the task the computer is to perform.

This is easy to get as a student because the teacher will hand you a sheet

of paper with an assignment on it that describes exactly what the

computer is to do for you to get a good grade. If you don't want a good

Introduction to Programming using C Page 5

grade, the computer can do that without your intervention. But I digress.

The second thing you need to get started is the knowledge of how to tell

the computer to do these things. It turns out there are lots of ways to get

the computer to do a particular task...just like there are lots of ways to

ask someone to please obtain for me my fluffy foot covering devices in

order to prevent chilliness. Many of these ways are right, and a few of

them are best.

What you can do as a programmer, though, is get through the

assignments doing something that works, and then look back at it and see

how you could have made it better or faster or more concise. This is one

thing that seriously differentiates programmers from excellent

programmers.

Eventually what you'll find is that the stuff you wrote back in college

(e.g. The Internet Pizza Server, or, say, my entire Masters project) is a

horridly embarrassing steaming pile of code that was quite possibly the

worst thing you've ever written. The only way to go is up.

1.2.1 The Specification

what do you do with this specification? It's a description of what the

program is going to do, right? But where to begin? What you need to do is

this: break down the design into handy bite-sized pieces that you can

implement using techniques you know work in those situations.

As you learn C, those bite-sized pieces will correspond to function calls or

statements that you will have learned. As you learn to program in general,

those bite-sized pieces will start corresponding to larger algorithms that

you know (or can easily look up.) Right now, you might not know any of

the pieces that you have at your disposal. That's ok. The fastest way to

learn them is to, right now, press the mouse to your forehead and say the

password, “K&R2”.

That didn't work? Hmmm. There must be a problem with the system

somewhere. Ok, we'll do it the old-school way: learning stuff by hand.

Let's have an example:

Introduction to Programming using C Page 6

Assignment: Implement a program that will calculate the sum of all

numbers between 1and the number the user enters. The program shall

output the result. Ok, well, that summary is pretty high level and doesn't

lend itself to bite-sized pieces, so it's up to us to split it up. There are

several places that are good to break up pieces to be more bite-sized.

Input is one thing to break out, output is another. If you need to input

something, or output something, each of those is a handy bite-sized

piece. If you need to calculate something, that can be another bite-sized

piece (though the more difficult calculations can be made up of many

pieces themselves!)

So, moving forward through a sample run of the program:

1. We need the program to read a number from the keyboard.

2. We need the program to compute a result using that number.

3. We need the program to output the result.

This is good! We've identified the parts of the assignment that need to be

worked on. “Wait! Stop!” I hear you. You're wondering how we knew it

was broken down into enough bite-sized pieces, and, in fact, how we

even know those are bite-sized pieces, anyhow! For all you know,

reading a number from the keyboard could be a hugely involved task!

The short of it is, well, you caught me trying to pull a fast one on you. I

know these are bite-sized because in my head I can correspond them to

simple C function calls or statements. Outputting the result, for instance,

is one line of code (very bite-sized). But that's me and we're talking

about you. In your case, I have a little bit of a chicken-and-egg problem:

you need to know what the bite-sized pieces of the program are so you

can use the right functions and statements, and you need to know what

the functions and statements are in order to know how to split the project

up into bite-sized pieces! Hell's bells! So we're compromising a bit. I

agree to tell you what the statements and functions are if you agree to

keep this stuff about bite-sized pieces in the back of your head while we

Introduction to Programming using C Page 7

progress. Ok? ...I said, “Ok?” And you answer... “Ok, I promise to keep

this bite-sized pieces stuff in mind.” Excellent!

1.2.2 The implementation

Right! Let's take that example from the previous section and see how

we're going to actually implement it. Remember that once you have the

specification (or assignment or whatever you're going to call it) broken

up into handy bite-sized pieces, then you can start writing the

instructions to make that happen. Some bite-sized pieces might only

have one statement; others might be pages of code. Now here we're

going to cheat a little bit again, and I'm going to tell you what you'll need

to call to implement our sample program. I know this because I've done

it all before and looked it all up. You, too, will soon know it for the same

reasons let's take our steps, except this time, we'll write them with a little

more information. Just bear with me through the syntax here and try to

make the correlation between this and the bite-sized pieces mentioned

earlier. All the weird parentheses and squirrely braces will make sense in

later sections of the guide. Right now what are important the steps and

the translation of those steps to computer code.

The steps, partially translated:

1. Read the number from the keyboard using scanf().

2. Compute the sum of the numbers between one and the entered

number using a for-loop

 and the addition operator.

1. Print the result using printf().

Normally, this partial translation would just take place in your head. You

need to output to the console? You know that the printf() function is

one way to do it. And as the partial translation takes place in your head,

Introduction to Programming using C Page 8

what better time than that to actually code it up using your favorite

editor:

#include <stdio.h>

int main(void)

{

int num, result = 0;

scanf("%d", &num); // read the number from the

keyboard

for(i = 1; i <= num; i++) { // compute the result

result += i;

}

printf("%d\n", result); // output the result

return 0;

}

Remember how there were multiple ways to do things? Well, I didn't

have to use scanf(), I didn't have to use a for-loop, and I didn't have

to use printf(). But they were the best for this example.

Example:

This is the canonical example of a C program. Everyone uses it:

/* helloworld program */

#include <stdio.h>

int main(void)

{

printf("Hello, World!\n");

return 0;

}

We're going to don our long-sleeved heavy-duty rubber gloves, grab a

scapel, and rip into this thing to see what makes it tick. So, scrub up,

because here we go. Cutting very gently... Let's get the easy thing out of

the way: anything between the digraphs /* and */ is a comment and

will be completely ignored by the compiler. This allows you to leave

messages to yourself and others, so that when you come back and read

your code in the distant future, you'll know what the heck it was you

were trying to do. Believe me, you will forget; it happens. (Modern C

compilers also treat anything after a // as a comment. GCC will obey it,

as will VC++. However, if you are using an old compiler like Turbo C,

Introduction to Programming using C Page 9

well, the // construct was a little bit before its time. So I'll try to keep it

happy and use the old-style /*comments*/ in my code. But everyone

uses // these days when adding a comment to the end of a line, and you

should feel free to, as well.)

Now, what is this #include? Well, it tells the C Preprocessor to pull the

contents of another file and insert it into the code right there.

Wait--what's a C Preprocessor? Good question. There are two stages

(well, technically there are more than two, but hey, let's pretend there are

two and have a good laugh) to compilation: the preprocessor and the

compiler. Anything that starts with pound sign, (#) is something the

preprocessor operates on before the compiler even gets started. Common

preprocessor directives, as they're called, are #include and #define.

After the C preprocessor has finished preprocessing everything, the

results are ready for the compiler to take them and produce assembly

code, machine code, or whatever it's about to do. Don't worry about the

technical details of compilation for now; just know that your source runs

through the preprocessor, then the output of that runs through the

compiler, then that produces an executable for you to run.

What about the rest of the line? What's <stdio.h>? That is what is

known as a header file. It's the dot-h at the end that gives it away. In fact

it's the “Standard IO” (stdio) header file that you will grow to know and

love. It contains preprocessor directives and function prototypes (more

on that later) for common input and output needs. For our demo

program, we're outputting the string “Hello, World!”, so we in particular

need the function prototype for the printf() function from this header

file.

How did I know I needed to #include <stdio.h> for printf()?

Answer: it's in the documentation. If you're on a Unix system, man

printf and it'll tell you right at the top of the

Introduction to Programming using C Page 10

man page what header files are required. That was all to cover the first

line! But, let's face it, it has been completely dissected. No mystery shall

remain!

The next line is main(). This is the definition of the function main();

everything between the squirrely braces ({ and }) is part of the function

definition.

A function: “a function is a collection of code that is to be executed as a

group when the function is called. You can think of it as, “When I call

main(), all the stuff in the squirrley braces will be executed, and not a

moment before.” How do you call a function, anyway? The answer lies

in the printf() line, but we'll get to that in a minute.

Now, the main function is a special one in many ways, but one way

stands above the rest: it is the function that will be called automatically

when your program starts executing. Nothing of yours gets called before

main(). In the case of our example, this works fine since all we want to

do is print a line and exit.

that's another thing: once the program executes past the end of main(),

down there at the closing squirrley brace, the program will exit, and

you'll be back at your command prompt.

So now we know that that program has brought in a header file,

stdio.h, and declared a main() function that will execute when the

program is started. What are the goodies in main()?

 Check Your Progress

 Choose the Correct one

Q.1: What is function?

A. Function is a block of statements that perform some specific

task.

B. Function is the fundamental modular unit. A function is

usually designed to perform a specific task.

C. Function is a block of code that performs a specific task. It

Introduction to Programming using C Page 11

has a name and it is reusable

D. All the above

Q.2: C programs are converted into machine language with the help of

A. An Editor

B. A compiler

C. An operating system

D. None of the above

Q.3: Name the loop that executes at least once.

A. For

B. If

C. do-while

D. while

A call to the function printf(). You can tell this is a function

call and not a function definition in a number of ways, but one indicator

is the lack of squirrely braces after it. And you end the function call with

a semicolon so the compiler knows it's the end of the expression. You'll

be putting semicolons after most everything, as you'll see.

You're passing one parameter to the function printf(): a string to be

printed when you call it. Oh, yeah--we're calling a function! We rock!

Wait, wait--don't get cocky. What's that crazy \n at the end of the

string? Well, most characters in the string look just like they are stored.

But here are certain characters that you can't print on screen well that are

embedded as two-character backslash codes. One of the most popular is

\n (read “backslash-N”) that corresponds to the newline character. This

is the character that causing further printing to continue on the next line

instead of the current. It's like hitting return at the end of the line. So

copy that code into a file, build it, and run it--see what happens:

Hello, World!

Introduction to Programming using C Page 12

It's done and tested!

1.4 Answer to check your Progress

Ans to Q.1: D

Ans to Q.2: B

Ans to Q.3: C

Ans to Q.4: scanf().

Ans to Q.5: printf().

1.5 Model Questions

1. What is Variable, Operators, Expression? Explain with the help of

example.

2. What is Function and function prototypes?

3. What is Compiler?

4. What is the difference between printf() and scanf()?

Check Your Progress

Fill in the blanks

Q.4: Read the number from the keyboard using ……………….

Q.5: Print the result using……………..

Introduction to Programming using C Page 13

Unit-2

Variables, Expressions, and Statements

1.1 Learning Objectives

1.2 Introduction

1.3 Variable in C

1.3.1 Declaration of Variables

1.3.2 Initialization of Variables

1.3.3 Operators

1.3.4 Expression

1.3.5 Statements

1.4 Answer to Check Your Progress

1.5 Model Questions

1.1 Learning Objectives

After going through this unit the learner will able to Learn:

• About the variables

• Declaration of Variables

• Initialization of Variables

• Operators

• Expression

• Statements

1.2 Introduction

We have already learned about basic Building Blocks In addition,

concepts of Program implementation and specification have also been

introduced in the previous unit. In this unit, you will come across the

basic building block and their implementation used in C language.

Introduction to Programming using C Page 14

1.3 Variable in C

A variable is defined as name given to the storage location in computer

memory. When using a variable, we actually refer to an address of the

memory where the data is stored. A variable name can be chosen by the

programmer in a meaningful way that reflects what it represents in the

program. The naming convention of variable follows the rule of

constructing identifiers.

1.3.1 Declaration of Variables

Each variable to be used in the program must be declared. For

declaration of variable, we first specify the data type of the variable

followed by its name. The data type indicates the kind of data that the

variable will store. A variable cannot be of type void. In C, variable

declaration always ends with a semicolon. The general syntax of

declaration of a variable is :

data_type variablename;

 We can also declared more than one variable in a single statement as

follows:

data_type variable1, variable2, , variableN;

For example,
int roll;

float salary;

char grade;

int m1,m2,m3;

int total_marks;

In C, variables can be declared at any place in the program but one thing

should be kept in mind. Variables should be declared before using them.

By declaring a variable we usually tell three things to the compiler :

Introduction to Programming using C Page 15

• What the variable name is.

• What type of data the variable will hold.

• and the scope of the variable.

1.3.2 Initialization of Variables

While declaring the variables, we can also initialize them with some

value.

Following are few examples of initialization statements:

int roll_no= 5;

float average=200.75;

char grade= ‘A’;

The initializer applies only to the variable defined immediately before it.

Therefore, the statement

int number, sum=0;

intializes the variable sum and not number.

Let us take a simple example for explaining declaration and initialization

of variables. Suppose we want to store value 153 to a variable. We first

create the name of the variable, suppose A. Since 153 is integer, so we

declare the variable A as integer type, and then assign 153 to that

variable. These can be done as follows :

 int A ;

 A = 153 ;

The first statement says that A is a container, where we can store only

integer type variable. This means that we cannot store value into A other

than integer. Therefore, this type of statement is known as

declaration statement. The second statement says that the value 153 is

stored in A. This means variable A is initialized with 153. Therefore this

type of statement is known as variable initialization. We can store values

to a variable in two ways:

• using assignment statement, and

• using a read statement.

Introduction to Programming using C Page 16

The use of assignment statement is already shown. In the second

approach you can make a call of C standard input function like scanf,

getch, getc, gets etc. to store value to a variable. For example, the

above initialization statement can be written as

scanf(“%d”, &A);

This statement will take an integer type input from standard input device

(that is keyword) and store it to A.

A few examples of variable declaration and initialization are shown

below:

Variable

declaration

Remarks

int i = 0, j = 1; i and j are declared as integer variables. The

variables i and j are initialized with value as 0

and 1 respectively.

float basic_pay; basic_pay is a floating point variable with a

real value or values containing decimal point.

char a; a is a character variable that stores a single

character.

double theta; theta is a double precision variable that stores

a double precision floating point number.

1.3.3 Operators

I've snuck a few quick ones past you already when it comes to

expressions. You've already seen things like:

result += i;

i = 2;

Those are both expressions. In fact, you'll come to find that most

everything in C is an expression of one form or another. But here for the

start I'll just tell you about a few common

types of operators that you probably want to know about.

Introduction to Programming using C Page 17

i = i + 3; /* addition (+) and assignment (=)

operators */

i = i - 8; /* subtraction, subtract 8 from i */

i = i / 2; /* division */

i = i * 9; /* multiplication */

i++; /* add one to i ("post-increment"; more

later) */

++i; /* add one to i ("pre-increment") */

i--; /* subtract one from i ("post-decrement") */

Looks pretty weird, that i = i + 3 expression, huh. I mean, it makes

no sense algebraically, right? That's true, but it's because it's not really

algebra. That's not an equivalency statement--it's an assignment.

Basically it's saying whatever variable is on the left hand side of the

assignment (=) is going to be assigned the value of the expression on the

right.

1.3.4 Expression

An expression in C consists of other expressions optionally put together

with operators. The basic building block expressions that you put

together with operators are variables, constant numbers (like 10 or

12.34), and functions and so when you chain these together with

operators, the result is an expression, as well. All of the following are

valid C expressions:

i = 3

i++

i = i + 12

i + 12

2

f += 3.14

Now where can you use these expressions? Well, you can use them in a

function call (I know, I know--I'll get to function real soon now), or as

the right hand side of an assignment. You have to be more careful with

the left side of an assignment; you can only use certain things there, but

Introduction to Programming using C Page 18

for now suffice it to say it must be a single variable on the left side of the

assignment, and not a complicated expression:

radius = circumference / (2.0 * 3.14159); /* valid */

diameter / 2 = circumference / (2.0 * 3.14159); /*

INVALID */

(I also slipped more operator stuff in there--the parentheses. These cause

part of an expression (yes, any old expression) to be evaluated first by

the compiler, before more of the expression is computed.

Check Your Progress

Fill in the Blanks

Q.1: A ………is simply a name for a number.

Q.2: A variable is defined as name given to the storage location

in……………….

Q.3: Each……………. to be used in the program must be declared

Q.4: An expression in C consists of other expressions optionally put

together with…………..

1.3.5 Statements

A statement is a command given to the computer that instructs the

computer to take a specific action, such as display to the screen, or

collect input. A computer program is made up of a series of statements.

What are these pesky statements? Let's say, completely hypothetically,

you want to do something more than the already amazingly grand

example program of assigning a value to a variable and printing it. What

if you only want to print it if the number is less than 10? What if you

want to print all numbers between it and 10? What if you want to only

Introduction to Programming using C Page 19

print the number on a Thursday? All these incredible things and more are

available to you through the magic of various statements.

The if statement

The easiest one to wrap your head around is the conditional

statement, if. It can be used to do (or not do) something based on a

condition.

Like what kind of condition? Well, like is a number greater than 10?

int i = 10;

if (i > 10) {

printf("Yes, i is greater than 10.\n");

printf("And this will also print if i is greater

than 10.\n");

}

if (i <= 10) print ("i is less than or equal to

10.\n");

In the example code, the message will print if i is greater than 10,

otherwise execution continues to the next line. Notice the squirrley

braces after the if statement; if the condition is true, either the first

statement or expression right after the if will be executed, or else the

collection of code in the squirlley braces after the if will be executed.

This sort of code block behavior is common to all statements.

What are the conditions?

i == 10; /* true if i is equal to 10 */

i != 10; /* true if i is not equal to 10 */

i > 10; /* true if i greater than 10 */

i < 10; /* true if i less than 10 */

i >= 10; /* true if i greater than or equal to 10 */

i <= 10; /* true if i less than or equal to 10 */

i <= 10; /* true if i less than or equal to 10 */

Guess what these all are? No really, guess. They're expressions! Just like

before! So statements take an expression (some statements take multiple

Introduction to Programming using C Page 20

expressions) and evaluate them. The if statement evaluates to see if the

expression is true, and then executes the following code if it is.

What is “true” anyway? C doesn't have a “true” keyword like C++ does.

In C, any non-zero value is true, and a zero value is false. For instance:

if (1) printf("This will always print.\n");

if (-3490) printf("This will always print.\n");

if (0) printf("This will never print. Ever.\n");

And the following will print 1 followed by 0:

int i = 10;

printf("%d\n", i == 10); /* i == 10 is true, so it's

1 */

printf("%d\n", i > 20); /* i is not > 20, so this is

false, 0 */

We just passed those expressions as arguments to the function printf()!

Just like we said we were going to do before!

Now, one common pitfall here with conditionals is that you end up

confusing the assignment operator (=) with the comparison operator

(==). Note that the results of both operators is an expression, so both are

valid to put inside the if statement. Except one assigns and the other

compares! You most likely want to compare. If weird stuff is happening,

make sure you have the two equal signs in your comparison operator.

The while statement

Let's have another statement. Let's say you want to repeatly perform a

task until a condition is true. This sounds like a job for the while loop.

This works just like the if statement, except that it will repeately execute

the following block of code until the statement is false, much like an

insane android bent on killing its innocent masters. Or something.

Here's an example of a while loop that should clarify this up a bit and

help cleanse your mind of the killing android image:

// print the following output:

//

// i is now 0!

Introduction to Programming using C Page 21

// i is now 1!

// [more of the same between 2 and 7]

// i is now 8!

// i is now 9!

i = 0;

while (i < 10) {

printf("i is now %d!\n", i);

i++;

}

printf("All done!\n");

The easiest way to see what happens here is to mentally step through the

code a line at a time.

1. First, i is set to zero. It's good to have these things initialized.

2. Secondly, we hit the while statement. It checks to see if the continuation

condition is true, and continues to run the following block if it is.

(Remember, true is 1, and so when i is zero, the expression i < 10 is

1 (true).

3. Since the continuation condition was true, we get into the block of code.

The printf() function executes and outputs “i is now 0!”.

4. Next, we get that post-increment operator! Remember what it does? It

adds one to i

 in this case. (I'm going to tell you a little secret about post-

increment: the increment

 happens AFTER all of the rest of the expression has been evaluated.

That's why it's

 called “post”, of course! In this case, the entire expression consists

of simply i, so the

 result here is to simply increment i.

5. Ok, now we're at the end of the basic block. Since it started with a while

statement, we're going to loop back up to the while and then:

6. We have arrived back at the start of the while statement. It seems like

such a long time

Introduction to Programming using C Page 22

ago we were once here, doesn't it? Only this time things seem

slightly different...what

could it be? The variable i is equal to 1 this time instead of 0! So we

have to check the continuation condition again. Sure enough, 1 < 10

last

time I checked, so we enter the block of code again.

7. We printf() “i is now 1!”.

8. We increment i and it goes to 2.

9. We loop back up to the while statement and check to see if the

continuation condition

 is true.

10. And where the variable i has finally been incremented so it's value is

10. Meanwhile, while we've slept in cryogenic hybernation, our program

has been dutifully fulfilling its thousand-year mission to print things like

“i is now 4!”, “i is now 5!”, and finally, “i is now 9!”

11. So i has finally been incremented to 10, and we check the continuation

condition. It 10 < 10? Nope, that'll be false and zero, so the while

statement is finally completed and we continue to the next line.

12. And lastly printf is called, and we get our parting message: “All

done!”.

That was a lot of tracing, there, wasn't it? This kind of mentally running

through a program is commonly called desk-checking your code, because

historically you do it sitting at your desk. It's a powerful debugging

technique you have at your disposal, as well.

The do-while statement

So now that we've gotten the while statement under control, let's take a

look at its closely related cousin, do-while.

They are basically the same, except if the continuation condition is false

on the first pass, do-while will execute once, but while won't execute at

all. Let's see by example:

/* using a while statement: */

Introduction to Programming using C Page 23

i = 10;

// this is not executed because i is not less than

10:

while(i < 10) {

printf("while: i is %d\n", i);

i++;

}

/* using a do-while statement: */

i = 10;

// this is executed once, because the continuation

condition is

// not checked until after the body of the loop runs:

do {

printf("do-while: i is %d\n", i);

i++;

} while (i < 10);

printf("All done!\n");

Notice that in both cases, the continuation condition is false right away.

So in the while, the condition fails, and the following block of code is

never executed. With the do-while, however,

the condition is checked after the block of code executes, so it always

executes at least once. In

this case, it prints the message, increments i, then fails the condition,

and continues to the “All

done!” output.

The moral of the story is this: if you want the loop to execute at least

once, no matter what

the continuation condition, use do-while.

The for statement

Now you're starting to feel more comfortable with these looping

statements, Well, listen up! It's time for something a little more

complicated: the for statement. This is another looping construct that

gives you a cleaner syntax than while in many cases, but does basically

the same thing. Here are two pieces of equivalent code:

// using a while statement:

// print numbers between 0 and 9, inclusive:

i = 0;

while (i < 10) {

Introduction to Programming using C Page 24

printf("i is %d\n");

i++;

}

// do the same thing with a for-loop:

for (i = 0; i < 10; i++) {

printf("i is %d\n");

}

But you can see how the for statement is a little more compact and easy

on the eyes. It's split into three parts, separated by semicolons. The first

is the initialization, the second is the continuation condition, and the

third is what should happen at the end of the block if the contination

condition is true. All three of these parts are optional. And empty for will

run forever:

for(;;) {

printf("I will print this again and again and

again\n");

printf("for all eternity until the cold-death of the

universe.\n");

}

Before we start with functions in the next section, we're going to quickly

tie this in with that very important thing to remember back at the

beginning of the guide. Now what was it...oh, well, I guess I gave it

away with this section title, but let's keep talking as if that didn't happen.

Yes, it was basic building blocks, and how you take a specification and

turn it into little bite-sized pieces that you can easily translate into blocks

of code. I told you to take it on faith that I'd tell you some of the basic

pieces, and I'm just reminding you here, in case you didn't notice, that all

those statements back there are little basic building blocks that you can

use in your programs.

Check Your Progress

Q.5: A ……………..is a command given to the computer

that instructs the computer to take a specific

Introduction to Programming using C Page 25

 action, such as display to the screen, or collect input.

Q.6 A ……loop in C programming repeatedly executes a

target statement as long as a given condition is true.

Q.7: An…………… is a symbol that tells the compiler to

perform a certain mathematical or logical manipulation.

1.4 Answer to check your progress

Ans to Q.1: Variable

Ans to Q.2: computer memory.

Ans to Q.3: Variable

Ans to Q.4: Operators

Ans to Q.5: Statement

Ans to Q.6: While

Ans to Q.7: operator

1.5 Model Questions

1. What is the difference between a keyword and an identifier ?

2. List the rules of naming an identifier in C ?

3. Differentiate between a variable and a constant.

4. Define constants in C.What are the different types of constants in C?

Give suitable examples.

5. How to declare variable? Explain with the help of example.

Introduction to Programming using C Page 26

Unit-3

Functions

1.1 Learning Objectives

1.2 Introduction

1.3 Functions

1.3.1 Use of Function

1.3.2 Function declaration

1.4 Function call

1.4.1 Call by Value

1.4.2 Call by Reference

1.5 Nesting of Functions

1.6 Function Parameters

1.7 Categories of Function

1.8 Recursive Function

1.9 Answer to check your progress

1.10 Model Questions

Introduction to Programming using C Page 27

1.1 Learning Objectives

After going through this unit the learner will able to learn about:

• learn about function and its use in programs

• declare a function

• define a function

• describe function call

• learn about nesting of function

• learn about function parameters

• describe function categories

• illustrate recursive function

• Function Prototype

1.2 Introduction

In C programming, all executable code resides within a function. A

function is a named block of code that performs a task and then returns

control to a caller. Note that other programming languages may

distinguish between a "function", "subroutine", "subprogram",

"procedure", or "method" -- in C, these are all functions.

A function is often executed (called) several times, from several different

places, during a single execution of the program. After finishing a

function, the program will branch back (return) to the point after the call.

Functions are a powerful programming tool.

However, C language also allows the users to define their own functions

for carrying out various tasks. This unit concentrates on the creation and

utilization of such user-defined functions.With the proper use of such

user-defined functions, a large program can be broken down into a

number of smaller, self-contained components, each of which has some

unique purpose. This unit will help you in writing user-defined functions.

Introduction to Programming using C Page 28

1.3 Functions

With the previous section on building blocks fresh in your head, let's

imagine a freaky world where a program is so complicated, so

insidiously large, that once you shove it all into your main(), it becomes

rather unwieldy.

What do I mean by that? The best analogy I can think of is that programs

are best read, modified, and understood by humans when they are split

into convenient pieces, like a book is most conveniently read when it is

split into paragraphs.

Ever try to read a book with no paragraph breaks? It's tough, man,

believe me. I once read through Captain Singleton by Daniel Defoe since

I was a fan of his, but Lord help me, the man

didn't put a single paragraph break in there. It was a brutal novel.

But I digress. What we're going to do to help us along is to put some of

those building blocks in their own functions when they become too large,

or when they do a different thing than the rest of the code. For instance,

the assignment might call for a number to be read, then the sum of all

number between 1 and it calculated and printed. It would make sense to

put the code for calculating the sum into a separate function so that the

main code a) looks cleaner, and b) the function can be reused elsewhere.

Reuse is one of the main reasons for having a function. Take the

printf() for instance. It's pretty complicated down there, parsing the

format string and knowing how to actually output

characters to a device and all that. Imagine if you have to rewrite all that

code every single time

you wanted to output a measly string to the console? No, no--far better to

put the whole thing in

a function and let you just call it repeatedly.

Introduction to Programming using C Page 29

You've already seen a few functions called, and you've even seen one

defined, namely the almighty main() (the definition is where you

actually put the code that does the work of the function.) But the main()

is a little bit incomplete in terms of how it is defined, and this is allowed

for purely historical reasons. More on that later. Here we'll define and

call a normal function called plus_one() that take an integer

parameter and returns the value plus one:

int plus_one(int n) /* THE DEFINITION */

{

return n + 1;

}

int main(void)

{

int i = 10, j;

j = plus_one(i); /* THE CALL */

printf("i + 1 is %d\n", j);

return 0;

}

(Before I forget, notice that I defined the function before I used it. If

hadn't done that, the compiler wouldn't know about it yet when it

compiles main() and it would have given an unknown function call

error. There is a more proper way to do the above code with function

prototypes, but we'll talk about that later.) So here we have a function

definition for plus_one(). The first word, int, is the return type of the

function. That is, when we come back to use it in main(), the value of

the expression (in the case of the call, the expression is merely the call

itself) will be of this type.

By wonderful coincidence, you'll notice that the type of j, the variable

that is to hold the return

value of the function, is of the same type, int. This is completely on

purpose. Then we have the function name, followed by a parameter list

in parenthesis. These correspond to the values in parenthesis in the call to

the function...but they don't have to have the same names. Notice we call

it with i, but the variable in the function definition is named n.

Introduction to Programming using C Page 30

This is ok, since the compiler will keep track of it for you.

Inside the plus_one() itself, we're doing a couple things on one line

here. We have an expression n + 1 that is evaluated before the return

statement. So if we pass the value 10 into

the function, it will evaluate 10 + 1, which, in this universe, comes to

11, and it will return

that.

Once returned to the call back in main(), we do the assignment into j,

and it takes on the return value, which was 11.

I mentioned that the names in the parameter list of the function definition

correspond to the values passed into the function. In the case of

plus_one(), you can call it any way you like, as long as you call it

with an int-type parameter. For example, all these calls are valid:

int a = 5, b = 10;

plus_one(a); /* the type of a is int */

plus_one(10); /* the type of 10 is int */

plus_one(1+10); /* the type of the whole expression is

still int */

plus_one(a+10); /* the type of the whole expression is

still int */

plus_one(a+b); /* the type of the whole expression is

still int */

plus_one(plus_one(a)); /* oooo! return value is int, so

it's ok! */

If you're having trouble wrapping your head around that last line there,

just take it one expression at a time, starting at the innermost parentheses

(because the innermost parentheses are evaluated first, rememeber?) So

you start at a and think, that's a valid int to call the function

plus_one() with, so we call it, and that returns an int, and that's a

valid type to call the next outer plus_one().

Introduction to Programming using C Page 31

What about the return value from all of these? We're not assigning it into

anything! Where is it going? Well, on the last line, the innermost call to

plus_one() is being used to call plus_one() again, but aside from

that, you're right--they are being discarded completely. This

is legal, but rather pointless unless you're just writing sample code for

demonstration purposes.

It's like we wrote “5” down on a slip of paper and passed it to the

plus_one() function, and it went through the trouble of adding one,

and writing “6” on a slip of paper and passing it back to us, and then we

merely just throw it in the trash without looking at it. We're such

bastards.

I have said the word “value” a number of times, and there's a good

reason for that. When we pass parameters to functions, we're doing

something commonly referred to as passing by value. This warrants its

own subsection.

1.3.1 Use of Function

A function is a set of statements that carries out some specific task in a

program and it can be processed independently. Every C program

consists of one or more functions. One of these functions must be called

main. Program execution will always begin by carrying out the

instructions in main.

There are many advantages in using functions in a program. They are:

• Many programs require that a specific function is repeated many times.

Instead of writing the function code as many times as it is required, we

can write it as a single function and access the same function again and

again as many times as it is required.

Introduction to Programming using C Page 32

• The length of the source program can be reduced by using functions at

appropriate places.

• It is easy to locate and isolate a faulty function instead of modifying the

whole program.

• If the whole large program is divided into subprograms, each

subprogram can be written by one or two team members of the team

rather than having the whole team to work on the complex program.

• A single function written in a program can be used in other programs

also.

1.3.2 Function Declaration

A function declaration is also known as function prototype. Function

prototypes are usually written at the beginning of the program, ahead of

any user defined functions including main. It hints to the compiler that

the main() function is going to call the function which is declared, later

in the program. The general format of a function prototype is as follows:

where, return_type represents the data type of the item that is returned

by the function, function_name represents the name of the function,

type1, type2,...,typeN represent the data types of the arguments arg1,

arg2, , , , ,argN. It is necessary to use a semicolon at the end of function

prototype. Arguments name arg1, arg2 etc. can be omitted. However,

the argument data types are essential. For example:

int add(int, int);

In the above prototype declaration, int is the data type of the item

returned by the function, add is the name of the function and int within

the brackets ‘(’ and ‘)’ are the data types of the arguments.

return_type function_name(type1 arg1, type2

arg2,..,typeN argN);

Introduction to Programming using C Page 33

Program: Program to find the sum of two numbers.

Solution:

#include<stdio.h>

#include<conio.h>

int add(int,int); //function prototype or

declaration

void main()

{

int a,b,s; // integer variable a,b,s are

declared

clrscr();

printf(“Enter two integer number \n”); / /

display statement

scanf(“%d%d”, &a,&b);

s=add(a,b); //function call

printf(“\nThe summation is %d”, s);

getch();

}

int add(int a, int b)

{

int sum=0; // local variable sum and it is

intialised to zero

sum=a+b;

return sum; // value of sum is returned

}

1.4 Function call

Once a function has been declared and defined, it can be called from

anywhere within the program: from within the main() function, from

another function, and even from itself. We can call a function by simply

using the function name followed by a list of parameters(or arguments) if

any, enclosed in parentheses. For example,

 s = add (a,b) ; //Function call

In the above statement add(a,b) function is called and value returned by

it is stored in the variable s. When the compiler encounters a function

call, the control is transferred to int add(int x, int y). This function is

Introduction to Programming using C Page 34

then executed line by line as described and a value is returned when a

return statement is encountered. In our example, this value is assigned to

s. This is illustrated below:

Program: Program to find the summation of two numbers using

function

#include<stdio.h>

#include<conio.h>

int add(int, int); // function declaration

void main()

{ int a,b,s;

clrscr();

printf(“Enter two integer number \n”);

scanf(“%d%d”, &a,&b);

s=add(a,b); // function call

printf(“\nThe summation is %d”, s);

getch();

}

int add(int x, int y) //function header

{

int sum=0; //local variable sum and it is

intialised to zero

sum=x+y;

return sum; //value stored in sum is returned

to the calling function

}

Parameter passing is a method for communication of data between the

calling function and called function. These can be achieved by two ways:

• Call-by-value

• Call-by-reference

1.4.1 Call-by-value

Introduction to Programming using C Page 35

In case of call-by-value, the compiler copies the value of an argument in

a calling function to a corresponding parameter in the called function

definition. The parameter in the called function is initialized with the

value of the passed argument. As long as the parameter has not been

declared as constant, the value of the parameter can be changed, but the

changes are performed only within the scope of the called function; they

have no effect on the value of the argument in the calling function.

In the following example, the calling function main() passes two values

5 and 10 to the called function func(). The function func() receives

copies of these values and accesses them by the identifiers a and b. The

function func() changes the value of a. When control passes back to

main(), the actual values of x and y are not changed.

Program: Program to illustrate calling a function by value.

#include<stdio.h>

void func(int, int);

void main(void)

{

int x = 5, y = 10;

clrscr();

func(x, y);

printf(“In main, x = %d y = %d\n”, x, y);

}

void func(int a, int b)

{

a = a + b;

printf(“In func, a = %d b = %d\n”, a, b);

}

Output: In func, a = 15 b = 10

In main, x = 5 y = 10

1.4.2 Call-by-reference

Introduction to Programming using C Page 36

Call-by-reference refers to a method of calling a function by passing the

address of an argument in the calling function to a corresponding

parameter in the called function.

We have used an example below to illustrate the concept of call-by-value

and call-by-reference. The aim of the two programs listed below is to

perform swapping (interchange) of two values.

Program: Example to illustrate calling a function by value.

#include<stdio.h>

#include<conio.h>

void swap(int, int); //function prototype or

declaration

void main()

{

int a,b;

a=5;

b=10;

printf(“a and b before interchange: %d %d”, a,

b);

swap(a,b); //function call

printf(“\na and b after interchange: %d %d”,

a, b);

getch();

}

void swap(int i, int j) //function definition

{

int t;

t = i;

i = j;

j = t;

}

Here, the value to function swap() is passed by value.When we execute

this program, we will find that no swapping takes place.

The values of a and b are passed to swap, and the swap function does

swap them, but when the function returns to main() nothing happens.

The values of a and b are still the same. The output will

be:

a and b before interchange: 5 10

Introduction to Programming using C Page 37

a and b after interchange: 5 10

In the next program we use pointers to perform call-by-reference for

swapping of two values. Our next unit will help you in understanding

pointers

Program: Example to illustrate calling a function by reference

#include <stdio.h>

#include<conio.h>

void swap(int *, int *); //function declaration

void main()

{

int a,b;

a=5;

b=10;

clrscr(); // clearing the screen

printf(“a and b before interchange: %d

%d\n”,a,b);

swap(&a,&b); //function call

printf(“a and b after interchange: %d

%d\n”,a,b);

}

void swap(int *i, int *j)

{

int t;

t = *i;

*i = *j;

*j = t;

}

Here, the function uses called-by-reference. In other words, address is

passed by using the symbol “&” and the value is accessed by using the

symbol “*”.When swap() function is called, the addresses of a and b

are passed to the function. Thus, i points to a and j points to b. Once the

pointers are initialized by the function call, *i is another name for a, and

Introduction to Programming using C Page 38

*j is another name for b. When the code uses *i and *j, it really means a

and b. So, when we interchange the values of i and j in function swap(),

we interchange the values of a and b. Hence, when the function is

complete, a and b have been interchanged. The output will be:

a and b before interchange: 5 10

a and b after interchange: 10 5

1.5 Nesting of Functions

C permits nesting of functions freely. There is no limit to how deeply

functions can be nested. A nested function is encapsulated within another

function. Suppose a function a can call function b and function b can call

function c and so on. We have taken the following example to illustrate

nesting of function.

Program: Program to illustrate the concept of nested function

#include<stdio.h>

#include<conio.h>

void main()

{

int a,b,c;

float r;

clrscr();

float ratio(int,int,int); // function

ratio() declared

printf("Enter a,b and c :");

scanf("%d%d%d",&a,&b,&c);

r=ratio(a,b,c); // ratio() function called

printf("%f\n",r);

getch();

}

float ratio(int x, int y, int z)

{

Introduction to Programming using C Page 39

int difference(int,int); // function

difference() declared

if(difference(y,z))

return(x/(y-z));

else

return(0.0);

}

int difference(int p, int q)

{

if(p!=q)

return(1);

else

return(0);

}

The above program calculates the ratio a / b - c and prints the result.

We have the following three functions:

main()

ratio()

difference()

The main() function reads the value of a,b,c and calls the function ratio(

) to calculate the value a / (b-c). This ratio cannot be evaluated if (b - c)

=0. Therefore, ratio() calls another function difference() to test

whether the difference(b-c) is zero or not.

1.6 Function Parameters

C functions exchange information by means of parameters. The term

parameter refers to any declaration within the parentheses following the

function name in a function declaration, definition or function call.

Formal Parameters: The parameters which appear in the first line of the

function definition are referred to as formal parameter. Formal

parameters are written in the function prototype and function header of

Introduction to Programming using C Page 40

the definition. Formal parameters are local variables which are assigned

values from the arguments when the function is called.

Actual Parameters: When a function is called, the values (expressions)

that are passed in the call are called the actual parameters. At the time of

the call each actual parameter is assigned to the corresponding formal

parameter in the function definition. It may be expressed in constants,

single variables, or more complex expressions. However, each actual

parameter must be of the same data type as its corresponding formal

parameter.

The following rules apply to parameters of C functions:

• Except for functions with variable-length argument lists, the number of

arguments in a function call must be the same as the number of

parameters in the function definition. This number can be zero.

• Arguments are separated by commas.

• The scope of function parameters is the function itself. Therefore,

parameters of the same name in different functions are unrelated. Let us

consider the following example to illustrate the concept of formal and

actual parameters:

Program: Program to illustrate the concept of formal and actual

parameters

#include<stdio.h>

#include<conio.h>

void display(int,int);

void main()

{ int a,b;

display(a,b);

getch();

}

void display(int x, int y)

{

printf(“%d%d”,x,y);

}

Introduction to Programming using C Page 41

Here, x and y are formal parameters and take the value (a,b) from the

calling function display(a,b).

Check Your Progress

Q.1: Fill in the blacks:

i) When a function returns nothing then the return type is__________.

ii) If a C program has only one function then that function is__________.

iii) The parameters used in a function call are __________.

iv) When a variable is passed to a function by value, its value remains

__________ in the calling program.

v) A function can be called either by __________ or__________ or both.

1.7 Categories of Function

Depending on whether arguments are present or not and whether

a value is returned or not, functions are categorized as follows:

• Functions with no arguments and no return values

• Functions with arguments and no return values

• Functions with arguments and one return value

• Functions with no arguments but a return value

• Functions that return multiple values

We have illustrated the above categories of functions by using different

programs. The concept of different categories of functions is explained

using an example to “Multiply of two integer numbers”.

Introduction to Programming using C Page 42

 ⚫ Functions with no arguments and no return values

Program: Program to illustrate the concept of a function with no

arguments and no return values

#include<stdio.h>

#include<conio.h>

void multi(void); //function declaration with

no argument

void main()

{

clrscr();

multi();

getch();

}

void multi(void)

{

int a,b,m;

printf(“Enter two integers:”);

scanf(“%d%d”, &a,&b);

m=a*b;

printf(“\nThe product is: %d”,m);

}

• Functions with arguments and no return values

Program: Program to illustrate the concept of a function with arguments

and no return values

#include<stdio.h>

#include<conio.h>

void multi(int,int); //function declaration with

two argument

void main()

{

Introduction to Programming using C Page 43

int a,b;

clrscr();

printf(“Enter two integers:”);

scanf(“%d%d”, &a,&b);

multi(a,b);

getch();

}

void multi(int a,int b)

{ int m;

m=a*b;

printf(“\nThe product is: %d”,m);

}

• Functions with arguments and one return value

Program: Program to illustrate the concept of a function with arguments

and one return values

#include<stdio.h>

#include<conio.h>

int multi(int,int); //function declaration with

two argument

void main()

{

int a,b,m;

clrscr();

printf(“Enter two integers:”);

scanf(“%d%d”, &a,&b);

m=multi(a,b);

printf(“\nThe product is: %d”,m);

getch();

}

int multi(int a,int b)

{

int z;

z=a*b;

Introduction to Programming using C Page 44

return z; /*return statement. the value of

z is returned to the calling

function*/

}

• Functions with no arguments but a return value

Program: Program to illustrate the concept of a function with no

arguments but a return value

#include<stdio.h>

#include<conio.h>

int multi(void); //function declaration with

no argument

void main()

{

int m;

clrscr();

m=multi();

printf(“\nThe product is: %d”,m);

getch();

}

int multi(void)

{

int a,b,p;

printf(“Enter two integers:”);

scanf(“%d%d”, &a,&b);

p=a*b;

return p;

}

Return statement can return only one value. In C, the mechanism of

sending back information through arguments is achieved by two

operators known as the address operator (&) and indirection operator

(*).

Let us consider an example to illustrate this.

⚫ Functions returning multiple values

Introduction to Programming using C Page 45

Program: Program to illustrate the concept of functions returning

multiple values

#include<iostream.h>

#include<conio.h>

void calculate(int, int, int *, int *);

void main()

{

int a,b,s,d;

clrscr();

printf(“\nEnter two integer:”);

scanf(“%d%d”,&a,&b);

calculate(a,b,&s,&d);

printf(“\nSummation is:%d \n Difference is:%d”,

s,d);

getch();

}

void calculate(int x,int y, int *sum, int *diff)

{

*sum=x+y;

*diff=x-y;

}

In the fuction call, while we pass the actual values of a and b to the

function calculate(), we pass the address of locations where the values of

s and d are stored in the memory.

When the function is called, the value of a and b are assigned to x and y

respectively. Address of s and d are assigned to sum and diff

respectively. The variables *sum and *diff are known as pointers and

sum and diff pointer variables. Since they are declared as int, they can

point to locations of int type data.

1.8 Recursive Function

Introduction to Programming using C Page 46

When a function calls itself it is called a recursive function. Recursion is

a process by which a function calls itself repeatedly, until some specified

condition has been satisfied. A very simple example is

presented below:

Program: Program to illustrate the concept of recursive function

#include<stdio.h>

#include<conio.h>

void main()

{

printf(“Recursive function\n”);

main();

getch();

}

The output of the above programme will be like this:

Recursive function

Recursive function

Recursive function

Recursive function

............................

............................

In the above case, we will have to terminate the execution abruptly;

otherwise the program will execute indfinitely.
The factorial of a number can also be determined using recursion. The

factorial of a number n is expressed as a series of repeatitive

multiplications as shown below:

Factorial of n = n(n-1)(n-2)(n-3).....1

For example, factorial of 5= 5x4x3x2x1 =120

Program: Program to find factorial of an integer number

#include<stdio.h>

Introduction to Programming using C Page 47

#include<conio.h>

long int factorial(int);

void main()

{

int n ;

long int f ;

clrscr() ;

printf("\nEnter an integer number:") ;

scanf("%d", &n) ;

f=factorial(n) ;

printf("\nThe factorial of %d is : %ld",n,f) ;

getch() ;

}

long int factorial(int n)

{

long int fact ;

if(n<=1)

return(1);

else

fact=n*factorial(n-1);

return(fact);

}

Let us see how recursion works assuming n = 5. If we assume n=1 then

the factorial() function will return 1 to the calling function. Since n ¹1,

the statement

fact = n * factorial (n-1);

will be executed with n=5. That is,

fact = 5 * factorial (4);

will be evaluated. The expression on the right-hand side includes a call to

factorial with n = 4 .This call will return the following value:

Introduction to Programming using C Page 48

4 * factorial(3)

In this way factorial(3), factorial(2), factorial(1) will be returned. The

sequence of operations can be summarized as follows:

fact = 5 * factorial (4)

= 5 * 4 * factorial (3)

= 5 * 4 * 3 * factorial (2)

= 5 * 4 * 3 * 2 * factorial (1)

= 5 * 4 * 3 * 2 * 1

=120

When we write recursive functions, we must have an if statement

somewhere to force the function to return without the recursive call

being executed. Otherwise, the function will never return.

Program: Program to find the sum of digits of a number using recursion.

#include<stdio.h>

#include<conio.h>

void main()

{

int sum(int); //function prototype

int n,s;

clrscr();

printf(“\n Enter a positive integer:”);

scanf(“%d”,&n);

s=sum(n);

printf(“\n Sum of digits of %d is %d ”, n,s);

getch();

}

int sum(int n)

{

if(n<=9)

return(n);

Introduction to Programming using C Page 49

else

return(n%10+sum(n/10)); // recursive

call of sum()

}

Output: Enter a positive integer: 125

Sum of digits of 125 is 8

1.9 Answer to check your progress

Ans. to Q. No. 1: i) void, ii) main(), iii) actual parameters, iv)

unchanged, v) call by value, call byreference
Ans. to Q. No. 2: General format of function definition is given below:

return_type function_name(parameter list)

{

local variable declaration;

executable statement1 ;

executable statement2 ;

.

.

return statement ;

Check Your Progress

Q.2: Write down the syntax of function definition.

Q.3: Write the first line of the function definition, including the formal

argument declarations, for each

 of the situations described below:

i) A function called average accepts two integer arguments and returns a

floating-point result.

ii) A function called convert accepts a character and returns another

character.

Introduction to Programming using C Page 50

}

Ans. to Q. No. 3: i) float average(int a, int b) ii) char convert(char a)

1.10 Model Questions

1. What is a main() function?

2. What is recursion? Explain it with example.

3. What is the purpose of return statement?

4. What are formal and actual arguments? What is the relationship

between formal and actual argument?

5. What is meant by a function call?

Unit-4

Variables

1.1 Learning Objectives

1.2 Introduction

1.3 Variables, The Sequel

1.4 UP Scope

1.5 Storage Classes

1.6 Automatic variable

1.7 External Variable

1.8 Static Variable

1.9 Register Variable

1.10 Answer to Check Your Progress

Introduction to Programming using C Page 51

1.11 Model Questions

1.1 Learning Objectives

After going through this unit, the learner will able to:

• Learn about, up scope, global variable

• Learn about Storage Class

• Describe Automatic, External, Static and Register Variable

• Describe the Scope of Variables

• Define lifetime of a Variable

1.2 Introduction

We already have some basic idea about variables. Variables can be

defined as the memory location where we can store the values of a

Introduction to Programming using C Page 52

particular data type. The value stored in the variable may be changed

during the program executions.

Every C variable has a storage class and a scope. This storage class

determines the part of memory where storage is allocated for an object

and how long the storage allocation continues to exist during the

execution of program. The storage class also determines the scope which

specifies the part of the program over which a variable name is visible,

i.e. the variable is accessible by name. In this unit, we will discuss the

various storage classes.

1.3 Variables, The Sequel

We're going to talk about a couple things in this section that increase the

power you have over variables TO THE EXTREME. Yes, by now you

realize that melodrama is a well-respected part of this guide, so you

probably weren't even taken off-guard by that one, ironically. Let's talk

about variable scope and storage classes.

1.4. Up Scope

You recall how in some of those functions that we previously defined

there were variables that were visible from some parts of the program but

not from others? Well, if you can use a variable from a certain part of a

program, it's said to be in scope (as opposed to out of scope.) A variable

will be in scope if it is declared inside the block (that is, enclosed by

squirrley braces) that is currently executing.

Take a look at this example:

int frotz(int a)

{

int b;

b = 10; /* in scope (from the local definition) */

a = 20; /* in scope (from the parameter list) */

Introduction to Programming using C Page 53

c = 30; /* ERROR, out of scope (declared in another

block, in main()) */

}

int main(void)

{

int c;

c = 20; /* in scope */

b = 30; /* ERROR, out of scope (declared above in

frotz()) */

return 0;

}

So you can see that you have to have variables declared locally for them

to be in scope. Also note that the parameter a is also in scope for the

function frotz() What do I mean by local variables, anyway? These

are variable that exist and are visible only in a single basic block of code

(that is, code that is surrounded by squirrley braces) and, basic blocks of

code within them. For instance:

int main(void)

{ /* start of basic block */

int a = 5; /* local to main() */

if (a != 0) {

int b = 10; /* local to if basic block */

a = b; /* perfectly legal--both a and b are visible

here */

}

b = 12; /* ERROR -- b is not visible out here--only

in the if */

{ /* notice I started a basic block with no

statement--this is legal */

int c = 12;

int a; /* Hey! Wait! There was already an "a" out in

main! */

/* the a that is local to this block hides the a from

main */

a = c; /* this modified the a local to this block to

be 12 */

Introduction to Programming using C Page 54

}

/* but this a back in main is still 10 (since we set

it in the if): */

printf("%d\n", a);

return 0;

}

There's a lot of stuff in that example, but all of it is basically a

presentation of a simple rule:

when it comes to local variables, you can only use them in the basic

block in which they are declared, or in basic blocks within that. Look at

the “ERROR” line in the example to see exactly

what won't work. Let's digress for a second and take into account the

special case of parameters passed to functions. These are in scope for the

entire function and you are free to modify them to your heart's content.

They are just like local variables to the function, except that they have

copies of the data you passed in, obviously.

void foo(int a)

{

int b;

a = b; /* totally legal */

}

Global variables

There are other types of variables besides locals. There are global

variables. A global variable is visible thoughout the entire file that it is

defined in (or declared in more on that later). So it's just like a local,

except you can use it from anyplace. I guess, then, it's rather not like a

local at all. But here's an example:

#include <stdio.h>

/* this is a global variable. We know it's global,

because it's */

/* been declared in "global scope", and not in a

basic block somewhere */

Introduction to Programming using C Page 55

int g = 10;

void afunc(int x)

{

g = x; /* this sets the global to whatever x is */

}

int main(void)

{

g = 10; /* global g is now 10 */

afunc(20); /* but this function will set it to 20 */

printf("%d\n", g); /* so this will print "20" */

return 0;

}

Remember how local variables go on the stack? Well, globals go on the

heap, another chunk of memory. And never the twain shall meet. You

can think of the heap as being more “permanent” than the stack, in many

ways.

Now, I mentioned that globals can be dangerous. How is that? Well, one

thing you could imagine is a large-scale project in which there were a

bazillion globals declared by a bazillion

different programmers. What if they named them the same thing? What

if you thought you were

using a local, but you had forgotten to declare it, so you were using the

global instead? (That's a good side note: if you declare a local with the

same name as a global, it hides the global and all operations in the scope

will take place on the local variable.) What else can go wrong?

Sometimes using global variables encourages people to not structure

their code as well as they might have otherwise. It's a good idea to not

use them until there simply is no other reasonable way to move data

around.

Another thing to consider is this: does it actually make sense to have this

data stored globally for all to see? For example, if you have a game

where you use “the temperature of the world” in a lot of different places

Introduction to Programming using C Page 56

that might be a good candidate for a global varible. Why? Because it's a

pain to pass it around, and everyone has the same need for it.

1.5 Storage Classes

Storage class is related to the declaration of variable, function, and

parameters that we use in C programs. The storage class in the function

is used when returning a value of a particular data type from the

function. The storage class specifier used within the declaration

determines whether:

• the object is to be stored in memory or in a register.

• the object receives the default initial value or an indeterminate default

initial value.

• the object can be referenced throughout a program or only within the

function, block, or source file where the variable is defined.

Here, the term ‘object’ refers to variable, function and parameters in

which storage class is going to be used. Depending upon the above,

storage class can be classified into four categories:

I. Automatic

II. Register

III. Static

IV. External

Now, let us try to understand each storage class in the next section using

examples.

1.6 Automatic variable

We already know how variables are used in C program. Now, we are

going to use storage class in the variable declarations. Actually, we have

already used automatic storage class in the programs in the previous

units. Let us take an example as shown below:

Introduction to Programming using C Page 57

Program: Program to illustrate the use of automatic variable.

void main()

{

int a,b,s; // or we can write here as auto

int a,b,s;

scanf(“%d %d”, &a,&b);

s=a+b;

printf(“Sum is %d”,s);

}

By default all the variables declared are automatic. We can also

explicitly define the variables using auto keyword.

Let us look at the special properties of automatic storage that make it

different from other storage class. The automatic variable has the

following characteristics:

a. Storage: The value of the variable is stored in the memory of the

computer (not in register).

b. Default intial value: The default initial value for automatic variables is

garbage value i.e. any unpredictable value. It means that if the variable is

not initialized then the variable contains some useless value.

c. Scope: The scope means the availability of the variable. Automatic

variable is local to the block in which the variable is declared. Outside

this block the variable cannot be accessed.

d. Life time: The life time of this variable is within the block it is declared.

Program: Program to illustrate the use of automatic variables.

void main ()

{

auto int i,j;

i=10;

printf(“i= %d \n j= %d”,i,j);

}

Output: i=10

Introduction to Programming using C Page 58

j=8214 (or some other garbage value)

Since here we initialized i to 10 explicitly, therefore the value of i is

displayed as 10; But in case of j, as we do not assign any value so

garbage value is displayed at output. This example describes about the

default initial value of auto variables. Now, let us understand about the

life time and scope of automatic variables using another example.

Program: Program to show lifetime and scope of automatic variables.

void main ()

{

auto int i=1;

{

auto int i=2;

{

auto int i=3;

printf(“%d”,i);

}

printf(“%d”,i);

}

printf(“%d”,i);

}
Output: 3

2

1

The program has three blocks and each block initializes the value of i.

Note that variable i allocates extra memory for each declarations and

each i is different from one another. The first inner block is executed and

therefore 3 is displayed as the first output as in this block i=3.After that

the second inner block is executed and 2 is displayed as in the second

inner block the value of i is 2(i=2). Next, we come to the outer block

where the value of i is 1(i=1) so 1 is displayed as the last output. We

have seen that

Introduction to Programming using C Page 59

the value of i is different in each block. Whatever value we have

initialized i with, it remains valid only within the block where we have

declared it. This is known as scope of the variable.

1.7 External Variable

We have now learnt about automatic variable which is local to the block

in which it is declared. But sometimes we need a variable which should

be available to all the functions and blocks within the program. External

storage class fits this need. The properties of the external variable are:

a. Storage: The external storage variables are stored in memory.

b. Default initial value: The default initial value for external variables is

zero.

c. Scope: The scope for external variables is global i.e., the variable is

available to all functions and

blocks within the program.

d. Life time: The lifetime of the variables is until the program’s execution

stops.

The main difference between automatic and external variable is in the

scope and life time of the variables. They have similarities in storage and

default initial value. External variables are declared outside all functions.

Let us understand the scope and life time of external variables using

examples.

Program: Program to illustrate the concept of external variables.

int var; // external variable

void main()

{

printf(“%d”,var); // just print the value of

‘var’

var_add_two(); // add 2 to var and display

it

var_sub_one();

Introduction to Programming using C Page 60

}

void var_add_two()

{

var=var+2;

printf(“\n%d”,var);

}

void var_sub_one()

{

var=var-1;

printf(“\n%d”,var);

}

Output: 0

2

1

In the above pogram, the first output is 0 since default initial value of

external variable is 0.Next we increment ‘var’ by 2, so the next output is

2 and after that we decrement the value of ‘var’ by one so the output is 2-

1 i.e. 1. Note that, here the value of ‘var’ is visible to the funcitons

var_add_two() and var_sub_one() each of which modifies value of ‘var’.

Check Your Progress

Q.1: Write true or false:

a. The default initial value of external variable is same as with

automatic variable.

b. By default the variables declared are automatic.

c. The storage for the automatic variable is in the registers.

Q.2: Write down one similarity between automatic and external variables.

1.8 Static Variable

Introduction to Programming using C Page 61

Static variable is similar to the automatic variable. Like the automatic

variables static variables are local to the block in which they are

declared. The difference between them is that for static variables the

value does not disappear when the function is no longer active. The last

updated value for static variable always persists. That is, when the

control comes back to the same function again, the static variables have

the same value as they left at the last time. Properties of static variables

are:

a. Storage: The static variables are stored in memory.

b. Default initial value: The default initial value for static variables is

zero.

c. Scope: The scope of static variables is global.

d. Life time: The life time of static variables is untill the program’s

execution does not stop.

Program: Program to illustrate the concept of static variable.

void add_one();

void main()

{

add_one();

add_one();

}

void add_one()

{

static int var=3;

var=var+1

printf(“\n %d”,var);

}

Output: 4

 5

It can be observed that the output of the above program is 4 and 5. Since

we have initialized ‘var’ with 3 and then increment ‘var’ by 1 so the first

Introduction to Programming using C Page 62

output is 4 during the first call of the add_one() function. The variable

‘var’ retains its previous value 4 and thus in the second call of the

add_one() function, increments 4 by 1; thus the output is 5. If we write

the above function definition as:

void add_one()

{

int var=3; //or auto int var=3;

var=var+1

printf(“\n %d”,var)

}

The output of the program after the modifications should be: 4

 4

The reason behind this is that the automatic storage class variable does

not retain its previous value. Whenever the add_one() function is called

‘var’ has always initialized value 3 and then increment by 1; so the

output is always 4.

1.9 Register Variable

We have discussed about the automatic, static, external storage classes in

earlier sections. Each class stores the variables in the memory of the

computer. We know that there are mainly two areas for storing data in

the computer– Memory and CPU registers. Accessing data from the

register is faster than from memory. This makes the program to run

faster. Register storage class makes it possible for the program to run

faster. We use the register class with variables which accessed frequently

like loops (such as for, do-while etc.).

The characteristics of register variables in terms of scope, life time etc

are:

a) Storage: The register variables are stored in CPU registers.

b) Default initial value: The register variables take garbage values as

the default values.

Introduction to Programming using C Page 63

c) Scope: The scope of register variables is local to the block in which it

is declared.

d) Life time: The life time of register variables is till the control remains

within the particular block where it is declared.

Program: Program to illustrate the concept of register storage class

variables.

void main()

{

register int var;

for(var=1; var<=10; var++)

printf(“%d”,var);

}

A question that may arise in your mind here is that if we declare most of

the variables as register then every program should run faster. But then

why do we not always use this concept. This is because the number of

registers is limited in a computer system and so we cannot use register

class for all variables. If in a program the total number of register

variables exceeds the system register quantity; then all the variables that

exceed are by default declared as automatic.

For example, if we write a program with a loop that uses 20 register

variables (assume) and the computer has only 16 CPU registers, then the

rest of the 4 variables are automatically transformed to automatic storage

class variables. A important point to be noted here, is that register

storage cannot be used for float and double data type since CPU registers

usual capacity is 16 bit and both float and double data types require 4

byte (4 x 8 = 32 bit) and 8 byte (8 x 8 = 64 bit) storage respectively.

Check Your Progress

Q.3: Identify from the following which statements are true:

a. Default initial value of register storage class variable is zero.

Introduction to Programming using C Page 64

b. Scope of external and register variables are not same.

c. There is no limit of using register variable.

Q.4: Write one difference between register and automatic storage class

variable.

1.10 Answer to Check Your Progress

Ans. to Q. No. 1: a) False, b) True, c) False

Ans. to Q. No. 2: One similarity between automatic and external

variables is that the storage location for both class variables are in the

memory.

Ans. to Q. No. 3: a) False, b) True, c) False.

Ans. to Q. No. 4: Register class variable stores value in CPU registers

whereas automatic class variable use memory for storing data.

1.11Model Questions

1. Define storage class of a variable. What are the different types of

storage class?

2. Compare external and automatic storage class variables.

3. Explain the static and automatic storage class variable with

examples.

4. Why are register storage class variables used with loop counter

variables?

5. Mention the common factor among automatic, static and external

variables.

Introduction to Programming using C Page 65

Block-II

Unit-5

Pointers

1.1 Learning Objectives

1.2 Introduction

1.3 Pointers

1.3.1 Memory and Variables

1.3.2 Pointer Types

1.3.3 Dereferencing

Introduction to Programming using C Page 66

1.3.4 Passing Pointers as Parameters

1.4 Pointer Arithmetic

1.5 Pointers and One Dimensional Arrays

1.6 Pointers and Character Arrays

1.7 Passing Pointers to Functions as Arguments

1.8 Dynamic Memory Allocation

1.8.1 Library Function for Dynamic Memory Allocation

1.9 Answer to Check Your Progress

1.10 Model Questions

1.1 Learning Objectives

After going through this unit the learner will be able to:

• Learn the basic concept of pointer

• Learn about memory and variable

• Learn about types of pointer

• Declaring the pointer variable

• Access array elements using pointer

• Relate pointers to functions

Introduction to Programming using C Page 67

1.2 Introduction

A pointer is a variable that represents the location of a data item

or memory area. In other words, pointer variable holds address of other

memory location rather than a value. Pointers make C and C++more

reliable and flexible. One can access the memory location directly using

pointer. Within the computer memory, every data item occupies one or

more contiguous memory locations. The number of required memory

location depends on the data type used. For example, a character type

variable occupies 1 byte (8 bits) of memory, an integer usually requires

two contiguous bytes (16bits), a floating-point number requires4

contiguous bytes (32 bits) and soon. Each and every memory location

has a unique memory address or location number.

1.3 Pointers

Pointers are one of the most feared things in the C language. In fact, they

are the one thing that makes this language challenging at all. But why?

Because they, quite honestly, can cause electric shocks to come up

through the keyboard and physically weld your arms permantly in place,

cursing you to a life at the keyboard. Well, not really. But they can cause

huge headaches if you don't know what you're doing when you try to

mess with them.

1.3.1 Memory and Variables

Computer memory holds data of all kinds, right? It'll hold floats, ints,

or whatever you have. To make memory easy to cope with, each byte of

memory is identified by an integer. These integers increase sequentially

as you move up through memory. You can think of it as a bunch of

Introduction to Programming using C Page 68

numbered boxes, where each box holds a byte of data. The number that

represents each box is called its address.

Now, not all data types use just a byte. For instance, a long is often

four bytes, but it really depends on the system. You can use the

sizeof() operator to determine how many bytes of

memory a certain type uses. (I know, sizeof() looks more like a

function than an operator, but there we are.)

printf("a long uses %d bytes of memory\n",

sizeof(long));

When you have a data type that uses more than a byte of memory, the

bytes that make up the data are always adjacent to one another in

memory. Sometimes they're in order, and sometimes they're not, but

that's platform-dependent, and often taken care of for you without you

needing to worry about pesky byte orderings.

So anyway, if we can get on with it and get a drum roll and some for

boding music playing for the definition of a pointer, a pointer is the

address of some data in memory

Pointer is the address of data. Just like an int can be 12, a pointer can

be the address of data. Often, we like to make a pointer to some data that

we have stored in a variable, as opposed to any old random data out in

memory wherever. Having a pointer to a variable is often more useful.

So if we have an int, say, and we want a pointer to it, what we want is

some way to get the address of that int, right? After all, the pointer is

just the address of the data. What operator do you suppose we'd use to

find the address of the int?

Well, by a shocking suprise that must come as something of a shock to

you, gentle reader, we use the address-of operator (which happens to

be an ampersand: “&”) to find the address of the data. Ampersand.

So for a quick example, we'll introduce a new format specifier for

printf() so you can print a pointer. You know already how %d prints

Introduction to Programming using C Page 69

a decimal integer, yes? Well, %p prints a pointer. Now, this pointer is

going to look like a garbage number (and it might be printed in

hexidecimal instead of decimal), but it is merely the number of the box

the data is stored in. (Or the number of the box that the first byte of data

is stored in, if the data is multi-byte.) In virtually all circumstances,

including this one, the actual value of the number printed is unimportant

to

you, and I show it here only for demonstration of the address-of

operator.

#include <stdio.h>

int main(void)

{

int i = 10;

printf("The value of i is %d, and its address is

%p\n", i, &i);

return 0;

}

Output: The value of i is 10, and its address is

0xbffff964

1.3.2 Pointer Types

You can now successfully take the address of a variable and print it on

the screen. When we met last we were talking about how to make use of

pointers. Well, what we're going to do is store a pointer off in a variable

so that we can use it later. You can identify the pointer type because

there's an asterisk (*) before the variable name and after its type:

int main(void)

{

int i; /* i's type is "int" */

int *p; /* p's type is "pointer to an int", or "int-

pointer" */

return 0;

Introduction to Programming using C Page 70

}

so we have here a variable that is a pointer itself, and it can point to other

ints. We know it points to ints, since it's of type int* (read “int-

pointer”).

When you do an assignment into a pointer variable, the type of the right

hand side of the assignment has to be the same type as the pointer

variable. Fortunately for us, when you take the

address-of a variable, the resultant type is a pointer to that variable

type, so assignments like

the following are perfect:

int i;

int *p; /* p is a pointer, but is uninitialized and

points to garbage */

p = &i; /* p now "points to" i */

I know is still doesn't quite make much sense since you haven't seen an

actual use for the pointer variable, but we're taking small steps here so

that no one gets lost. So now, let's introduce you to the anti-address-of,

operator.

1.3.3 Dereferencing

A pointer, also known as an address, is sometimes also called a

reference. How in the name of all that is holy can there be so many terms

for exactly the same thing? I don't know the answer to that one, but these

things are all equivalent, and can be used interchangeably.

The only reason I'm telling you this is so that the name of this operator

will make any sense to you whatsoever. When you have a pointer to a

variable (AKA “a reference to a variable”), you can use the original

variable through the pointer by dereferencing the pointer. (You can think

of this as “de-pointering” the pointer, but no one ever says “de-

pointering”.)

What do I mean by “get access to the original variable”? Well, if you

have a variable called i, and you have a pointer to i called p, you can

Introduction to Programming using C Page 71

use the dereferenced pointer p exactly as if it were the original variable

i.

You almost have enough knowledge to handle an example. The last

tidbit you need to know is actually this: what is the dereference operator?

It is the asterisk, again: *. Now, don't get this confused with the asterisk

you used in the pointer declaration, earlier. They are the same character,

but they have different meanings in different contexts.

Example:

#include <stdio.h>

int main(void)

{

int i;

int *p; // this is NOT a dereference--this is a type

"int*"

p = &i; // p now points to i

i = 10; // i is now 10

*p = 20; // i (yes i!) is now 20!!

printf("i is %d\n", i); // prints "20"

printf("i is %d\n", *p); // "20"! dereference-p is

the same as i!

return 0;

}

Remember that p holds the address of i, as you can see where we did

the assignment to p. What the dereference operator does is tells the

computer to use the variable the pointer points to instead of using the

pointer itself. In this way, we have turned *p into an alias of sorts for i.

1.3.4 Passing Pointers as Parameters

Right about now, you're thinking that you have an awful lot of

knowledge about pointers, but absolutely zero application, right? I mean,

what use is *p if you could just simply say i instead?

Introduction to Programming using C Page 72

Well, the real power of pointers comes into play when you start passing

them to functions. Why is this a big deal? You might recall from before

that you could pass all kinds of parameters to functions and they'd be

dutifully copied onto the stack, and then you could manipulate local

copies of those variables from within the function, and then you could

return a single value.

What if you wanted to bring back more than one single piece of data

from the function? What if I answered that question with another

question, like this:

What happens when you pass a pointer as a parameter to a function?

Does a copy of the pointer get put on the stack? You bet your sweet peas

it does. Remember how earlier I rambled on and on about how EVERY

SINGLE PARAMETER gets copied onto the stack and the function uses a

copy of the parameter? Well, the same is true here. The function will get

a copy of the pointer.

But, and this is the clever part: we will have set up the pointer in advance

to point at a variable...and then the function can dereference its copy of

the pointer to get back to the original

variable! The function can't see the variable itself, but it can certainly

dereference a pointer to that variable! Example!

#include <stdio.h>

void increment(int *p) /* note that it accepts a pointer

to an int */

{

*p = *p + 1; /* add one to p */

}

int main(void)

{

int i = 10;

printf("i is %d\n", i); /* prints "10" */

increment(&i); /* note the address-of; turns it into a

pointer */

printf("i is %d\n", i); /* prints "11"! */

Introduction to Programming using C Page 73

return 0;

}

There are a couple things to see here...not the least of which is that the

increment() function takes an int* as a parameter. We pass it an

int* in the call by changing the int variable i to an int* using the

address-of operator. (Remember, a pointer is an address, so we make

pointers out of variables by running them through the address-of

operator.) The increment() function gets a copy of the pointer on the

stack. Both the original pointer &i (in main()) and the copy of the

pointer p (in increment()) point to the same address. So

dereferencing either will allow you to modify the original variable i!

The function can modify a variable in another scope! Rock on! Pointer

enthusiasts will recall from early on in the guide, we used a function to

read from the keyboard, scanf()...and, although you might not have

recognized it at the time, we used the address-of to pass a pointer to

a value to scanf(). We had to pass a pointer, see, because scanf()

reads from the keyboard and stores the result in a variable. The only way

it can see that variable that is local to that calling function is if we pass a

pointer to that variable:

int i = 0;

scanf("%d", &i); /* pretend you typed "12" */

printf("i is %d\n", i); /* prints "i is 12" */

See, scanf() dereferences the pointer we pass it in order to modify the

variable it points to. And now you know why you have to put that pesky

ampersand in there!

1.4 Pointer Arithmetic

Introduction to Programming using C Page 74

The following arithmetic operations can be performed with pointer

variables in C and C++:

Subtraction –

Incrementation ++

Decrementation – –

Pointer arithmetic follows data type size i.e., it causes the pointer to be

incremented or decremented by the number of bytes occupied by a

particular data type. For example, an integer pointer variable when

incremented by 1, will increase by 2, as the size of an integer variable in

windows environment is 2 bytes. This could be explained with the help

of the following example.

Program: Program showing pointer arithmetic.

#include<stdio.h>

#include<conio.h>

void main()

{

int *p, x=10;

clrscr();

p=&x;

printf(“p= %d\n”, p);

p=p+1;

printf(“p= %d\n”,p);

p=p+1;

printf(“p=%d “, p);

getch();

}

Output: p= –12

p= –10

p= –8

Introduction to Programming using C Page 75

Here, the value of p increases by 2 rather than by 1. It is because of the

data type integer. One can change the data type from integer to float. In

such situation p will increase by 4.

1.5 Pointers and One Dimensional Arrays

As discussed earlier, an array is a variable to represent multiple memory

locations with the same name. Each and every element of an array has

their unique memory addresses. These memory addresses can store into

pointer variables. Therefore, if x is a one dimensional array, then the

address of the first array element can be expressed as either &x [0] or

simply as x. Moreover, the address of second array element can be

written as either &x [1] or (x+1), and so on. This can be explained with

one example.

Let int x[5] = {10,20,30,40,50};

Here, we assume that address of the first array element i.e., x [0] is 2000,

so the address of second array element will be 2002, since one integer

variable occupies 2 bytes in memory.

Program: Display the content of an array using pointer

#include<stdio.h>

#include<conio.h>

void main()

{

int *p, x[5]={10,20,30,40,50};

clrscr();

p=&x[0];

printf(“First element=%d\t”,*p);

Introduction to Programming using C Page 76

p=p+1;

printf(“Second element= %d\t”,*p);

p=p+1;

printf(“Third element= %d\t”,*p);

p=p+1;

printf(“Fourth element= %d\t”,*p);

p=p+1;

printf(“Fifth element= %d\t”,*p);

getch();

}

The above program can also be written using loop construct, which

reduces the number of statements.

Program: Program to display the array content using pointer and loop
#include<stdio.h>

#include<conio.h>

void main()

{

int *p,i, x[5]={10,20,30,40,50};

clrscr();

p=&x[0];

printf(“Elements are : “);

for(i=0;i<=4;i=i+1)

{

printf(“%d”,*p);

p=p+1;

}

getch();

}

Here, p is a pointer variable of type integer and initially assigned the

address of the first array element x [0]. In subsequent iteration or

Introduction to Programming using C Page 77

repetition the value of p is increased by 1. i.e., by 2 bytes, since p is an

integer variable and displays the value of that address.

Check Your Progress

1. A pointer, also known as an address, is sometimes also called

a………….

2. You can identify the pointer type because there's an………………

before the variable name.

3. You can use the………… operator to determine how many bytes

of memory a certain type uses.

4. …………….which tells the compiler that the definition of the

variable is in a different file.

5. A…………. is a programming language construct, a variable type

that is declared outside any function and is accessible to all

functions throughout the program.

6. ……………is a named block of code that performs a task and then

returns control to a caller.

1.6 Pointers and Character Arrays

A character array forms a string. In other words, a string may be

considered as a string of characters. So, string can be processed using

pointer variables. Strings are always terminated with null character i.e.

’\0’.

Program: Program to display characters of a string using pointer.

#include<stdio.h>

#include<conio.h>

void main()

{

char name[]=”KKHO UNIVERSITY”;

char *p;

Introduction to Programming using C Page 78

clrscr();

p=&name[0];

while(*p!=’\0')

{

printf(“%d”,*p);

p++;

}

getch();

}

Here, the base address of the character array “name” is stored into the

pointer variable p. In each iteration, value at address of p is displayed,

then p is incremented by 1 until ’\0’ is found. One can increment the

pointer by using “++” operator and can decrement the pointer by using “-

-” operator.

Program: Program to display characters of a string in reverse order

using pointer.

#include<stdio.h>

#include<conio.h>

void main()

{

char name[]=”KKHSO UNIVERSITY”;

char *p,*q;

clrscr();

p=&name[0];

q=&name[0];

while(*p!=’\0')

{

p++;

}

p—;

while(p!=q)

Introduction to Programming using C Page 79

{

Printf(“%d\t”,*p);

p–;

}

getch();

}

1.7 Passing Pointers to Functions as Arguments

Pointers can pass to a function as arguments. Arguments can be passed

to a function in two ways i.e. by value and by reference. When an

argument is passed by value, the data item is copied to the function i.e. it

makes a duplicate copy of the original variable. In such situation, any

alteration or modification made in the variables of the function does not

affect the value of the original variable. Some situation may arise where

we want to change the value of variable in the original program with the

help of a function. When calling a function using pointers, it copies the

address of a variable to the function, not the value of the variable. The

contents of that address can be accessed directly either within the called

function or calling function. In other words, pointer variables are the

direct means of Communication among the function variables. Let us

explain the use of a pointer variable with the help of the following

example.

Program: Program to show passing address of a variable to a function.

#include<stdio.h>

#include<conio.h>

void main()

{

void passdata(int *p);

int x=10;

clrscr();

passdata(&x);

Introduction to Programming using C Page 80

getch();

}

void passdata(int *p)

{

printf(“Address of x : %d\n”,p);

printf(“Value of x : \n”, *p)”;

}

Here, there are two functions viz. main() and passdata(). The main()

function calls the passdata() function and passed the address of variable x

to the function. In passdata(), p is a pointer variable to accept the address

of variable x. Here, p is a formal parameter and x is actual parameter.

Program: Program to show call by value and call by reference.

#include<stdio.h>

#include<conio.h>

void main()

{

void passdata1(int *p);

void passdata2(int p);

int x=10;

clrscr();

printf(“Value of x before passdata1 call %d\n”,

x);

passdata2(x);

printf(“Value of x after passdata1 call

%d\n”,x|);

passdata1(&x);

printf(“Value of x after passdata2 call %d\n”,

x);

getch();

}

void passdata1(int *p)

{

Introduction to Programming using C Page 81

*p=20;

}

void passdata2(int p)

{

p=20;

}

This program contains two functions, called passdata1() and passdata2().

The function passdata1() receives one pointer to integer variable as its

argument and passdata2() receives one integer variable as argument. This

variable originally assigned a value 10. The value is then changed to 20

within passdata2() function. The new value is not reflected within main,

because the argument x was passed by value. As we have discussed

earlier, when a function is called by value, then a duplicate copy of the

original variable is copied to the called function. Any changes to the

variables of called function are local to that function only. In passdata1(),

the statement *p=20 indicates that the value 20 is assigned to the

contents of the pointer address, which is address of x. Since the address

is recognized in both functions i.e. passdata1() and main(), the reassigned

value will be recognized within main after call to passdata1().

Note : Function declaration, call and definition need not to be in order.

Program: Program to exchange value of two

variable using function.

#include<stdio.h>

#include<conio.h>

void main()

{

void exchange(int *p, int *q);

int x=10, y=20;

clrscr();

printf(“Value of x & y before function call”);

printf(“x=%d y=%d\n”,x,y);

Introduction to Programming using C Page 82

exchange(&x, &y); //passing address of x and

y

printf(“Value of x & y after function call”);

printf(“x=%d y=%d\n”,x,y);

getch();

}

void exchange(int *p, int *q)

{

int temp;

temp=*p;

*p=*q;

*q=temp;

}

1.8 Dynamic Memory Allocation

Memory allocation refers to the reservation of memory for storing data.

Memory allocation is done in C language in two ways (i) Static

allocation and (ii) Dynamic allocation. Static allocation is done by using

array. The main disadvantage of static allocation is that the programmer

must know the size of the array or data while writing the program.

Generally, it is not possible to know the required memory in advance. To

overcome this problem dynamic memory allocation is done. Dynamic

memory allocation refers to

the allocation of memory during program execution. The basic difference

between static and dynamic memory allocation is that in static allocation

memory is allocated during the compile time, whereas in dynamic

allocation memory is allocated during the program execution time.

Introduction to Programming using C Page 83

1.8.1 Library Function for Dynamic Memory Allocation

C language provides a set of library functions for dynamic memory

allocation and de-allocation. There are basically four functions used for

this purpose. They are: malloc(), calloc(), realloc() and free()

➢ malloc(): This function is used to allocate a block of memory.

After allocating the memory it returns a pointer of type void. This

means that one can assign it to any type of pointer. The syntax

for using malloc() is as follows:

ptr =(cast-type *)malloc(no. of bytes);

Here, ptr is a pointer of type cast-type. For example,

int x;

x=(int *)malloc(100);

If it is unable to find the requested amount of memory, malloc()

function returns NULL.

➢ calloc(): It is a library function to allocate memory. The difference

between calloc() and malloc() is that calloc() initialize the allocated

memory to zero where as malloc() does not initialize allocated memory

to zero.

Declaration Syntax: Following is the declaration for calloc()

function.

void (cast-type*)calloc(no. of elements to be allocated, size of

each element)

For example:

ptr = (int*) calloc(10, sizeof(int));

This statement allocates contiguous space in memory for an array

of 10 elements each of size of

int, i.e., 2 bytes.

Program: Program to show the usage of calloc() function.

#include <stdio.h>

Introduction to Programming using C Page 84

#include <stdlib.h>

int main()

{

int i,no;

int *p;

printf(“Enter number of elements :”);

scanf(“%d”,&no);

p = (int*)calloc(no, sizeof(int));

printf(“Enter %d numbers:\n”,no);

for(i=0 ; i < no ; i++)

{

scanf(“%d”,&p[i]);

}

printf(“The numbers are: “);

for(i=0 ; i < n ; i++)

{

printf(“%d “,p[i]);

}

free(p);

return(0);

}

➢ free(): A memory area that is dynamically allocated using either calloc()

or malloc() doesn’t get freed automatically when the execution

terminates. You must explicitly use free() library function to release the

memory space.

Syntax: free(ptr);

This statement frees the space allocated in the memory pointed

by ptr.

➢ realloc(): The size of dynamically allocated memory can be changed by

using realloc() library function.

Syntax: void *realloc(void *ptr, size_t size);

Introduction to Programming using C Page 85

Example: int *ptr = (int *)malloc(sizeof(int)*2);//dynamic

allocation for two integer value

int *ptr_new;

ptr_new = (int *)realloc(ptr, sizeof(int)*3);// dynamic

reallocation

Introduction to Programming using C Page 86

Check Your Progress

Q.7: Choose the appropriate option:

I. Which one of the following is valid pointer declaration:

a. int a*;

b. int *a,

c. int *a

d. int *a;

II. What will be the output of the following statements if the

variable ‘a’ located at address 50 [Assume no syntax error and

working platform is MS Windows]

 int *p, a=50;

 p=&a

 a++, p++;

 a++, p++;

 printf(“%d%d”, a,p);

a. 52, 54

b. 54, 52

c. 52, 52

d. 54, 54

III. In a string ‘\0’ is known as:

a. Back zero

b. Slash zero

c. Null character

d. End character

IV. The meaning of the following statements is: void sum(int *p,

int *q);

a. Function declaration

b. Call by address

c. Function does not return value

d. All of the above

V. malloc() is:

a. used to allocate memory statically

b. used to allocate memory dynamically

Introduction to Programming using C Page 87

1.10 Answer to check your progress

Ans. to Q. No.1: reference

Ans. to Q. No.2: asterisk (*)

Ans. to Q. No.3: sizeof()

Ans. to Q. No.4: extern

Ans. to Q. No.5: global variable

Ans. to Q. No.6: A function

Ans. to Q. No. 7: i. (d) int *a, ii. (a) 52, 54, iii. (c) Null character, iv. (d)None of

the above, v. (b) used to allocate memory dynamically

1.11 Model Questions

1. What are the difference between ‘pass by value’ and ‘pass by

reference’?

2. What is dynamic memory allocation? What are the functions used to

allocate memory dynamically.

3. Explain how pointers are passed to a function.

4. Write a program to input your name and display it using pointer

5. What is pointer arithmetic? What are the operators used in pointer

arithmetic.

6. Explain the mechanism to access one dimensional array using

pointer.

7. What is pointer? How pointer variables are declared?

c. a user defined function

d. does not return value

Introduction to Programming using C Page 88

Unit-6

Structure and Union

1.1 Learning Objectives

1.2 Introduction

1.3 Structure

1.3.1 Structure Declaration

1.3.2 Initialization of Structure

1.3.3 Accessing the Members of a Structure

1.4 Array of Structures

1.5 Structure within a Structure

1.6 Passing Structures to Functions

1.7 Pointer to Structure

1.8 Union

1.9 Enumerated Data Types

1.10 Defining Your Own Types (Typedef)

1.11 Answers To Check Your Progress

1.12 Model Questions

Introduction to Programming using C Page 89

1.1 Learning Objectives

After going through this unit, you will be able to:

• write program using a structure rather than several arrays

• learn how structures are defined and how their individual members are

accessed and processed within a program

• declare structure variables

• learn about array of structures

• declare and use pointer to structure

• learn about union

• describe enumerated data types

• learn about typedef

1.2 Introduction

We have already been acquainted with array which is a linear data

structure. Array takes basic data types like int, char, float or double and

organises them into a linear array of elements. The array serves most but

not all of the needs of the typical C program. The restriction is that an

array is composed of elements all of which are of the same type. If we

need to use a collection of different data type items it is not possible by

using an array. When we require using a collection of different data items

of different data types we can use a structure.

In this unit we will learn about structure and union. Here we will see how

a structure and union are defined, declared and accessed in C

programming language.

1.3 Structure

A structure is similar to records. It stores related information about an

entity. With the use of structures, programmers can conveniently handle a

group of related data items of different data types.

Introduction to Programming using C Page 90

In C language, structure is basically a user defined heterogeneous data

type. The main difference between a structure and an array is that an array

contains related information of the same data type.

1.3.1 Structure Declaration

A structure is declared using the keyword struct followed by a structure

name. All the variables of the structure are declared within the structure.

The data types of all these variables within a structure can be of different

types. A structure is generally declared with the following syntax:

struct struct_name

{

data_type variable_name; data_type variable_name;

...

...

};

For example, to keep the details of a book, we have to declare a structure

for the book containing variables like title, author, pages, price, publisher

etc. This book structure can be declared as:

struct book

{

char title[20]; char author[15];

char publisher[25]; int pages;

float price;

};

In the above declaration, the book name (i.e., title), author name

and publisher name would have to be stored as string, and the page and

price could be int and float respectively. The keyword struct declares a

structure to hold the details of five fields namely title, author, publisher,

pages and price. These are members of the structures. Each member may

Introduction to Programming using C Page 91

belong to different or same data type. It is not always necessary to define

the structure within the main() function.

Structure declaration acts as a template which conveys structure

information and member names to the compiler. Structure is a user-

defined data type. Now, let us discuss how to declare structure variables.

We can declare structure variables using the structure name (tag

name) any where in the program. For example, the statement,

struct book book1, book2, book3;

declares book1, book2, book3 as variables of type struct book. Each

declaration has five elements of the structure book. The complete

structure declaration might look like this:

struct book

{

char title[20], author[15], publisher[25]; int pages;

float price;

};

struct book

{

char title[20], author[15], publisher[25]; int pages;

float price;

} book1,book2,book3;

The use of tag name is optional. In the declaration, book1, book2, book3

are structure variables representing three books. Tag_name is not

included in this declation. A structure is usually defined before main(). In

such cases, the structure assumes global status and all the functions can

access the structure.

Again, let us consider another structure declaration “employee”.

struct employee

Introduction to Programming using C Page 92

{

char fname[15]; char lname[15]; int id_no;

int month; int day; int year;

} emp1;

Here we have declared one variable, emp1, to be structure with six

fields, some integers, some strings. Right after the declaration, a

portion of the main memory is reserved for the variable emp1. This variable

takes a size of 38 bytes for different members of struct employee: 15

bytes for fname, 15 bytes for lname, 2 bytes for id_no, 2 bytes for month,

2 bytes for day, 2 bytes for year.

1.3.2 Initialization of Structures

Initialization of structure means assigning some constants to the

members of the structure. A structure can be initialized in the same way as

other data types are initialized. The general syntax to initialize a structure

variable is as follows:

struct struct_name

{

data_type member_name1; data_type member_name1; data_type

member_name1;

...

...

} .. struct_var = {constant1, constant2, };

or,

struct struct_name

{

data_type member_name1; data_type member_name1; data_type

member_name1;

...

Introduction to Programming using C Page 93

...

}; struct struct_name struct_var = {constant1, constant2, };

For example, let us initialize an employee structure as follows:

struct employee

{

int empid;

char name[20]; char address[30]; float salary;

 }

 emp1 = {01,”Ranjan”,”Guwahati”, 42000.00}; or by writing

struct employee emp1 = {01,”Ranjan”,”Guwahati”, 42000.00};

C language automatically initializes the structure members if the

user does not explicitly initialize all the members. This is known as partial

initialization. Integer and float members are initialized to zero and

character arrays are initialized to ‘\0’ (null value) by default. Pictorially

we can represent it as follows:

Fig. Assigning values to a structure element

1.3.3 Accessing the Members of a Structure

The members of structure themselves are not variables. They should be

linked to structure variables in order to make them meaningful members.

The link between a member and a variable is established using the

member operator ‘.’ which is known as dot operator or period operator.

A structure member variable is generally accessed using the ‘.’ dot

Introduction to Programming using C Page 94

operator. The syntax is:

 struct_var . member_name;

For example, book1.price;

 book1.pages; book2.price;

book1.price is the variable representing the price of book1 and can be

treated like any other ordinary variable.

To assign value to the individual data members of the structure variable

book1, we may write,

book1.price = 520.00; book1.name = “Java”; book1.author=”Kumar”;

We can use scanf() function to input values for data members of the

structure variable book1 like this :

scanf(“%f”,&book1.price); scanf(“%d”,&book1.pages);

For displaying the values of structure variable book1, we can use

printf() function like this:

printf(“%f”, & book1.price); printf(“%s”, &book1.author);

Example: Program to enter information of one student and to display

that information.*/

#include<stdio.h> #include<conio.h> void main()

{

struct studentinfo

{

int roll;

char name[20]; char address[30]; int age;

} s1;

clrscr();

printf("Enter the student information:"); printf("\nEnter the student roll

no.:"); scanf("%d",&s1.roll);

printf("\nEnter the name of the student:"); scanf("%s",&s1.name);

printf("\nEnter the address of the student:"); scanf("%s",&s1.address);

Introduction to Programming using C Page 95

printf("\nEnter the age of the student:"); scanf("%d",&s1.age);

printf("\n\nStudent information:"); printf("\nRoll no.:%d",s1.roll);

 printf("\nName:%s",s1.name);

printf("\nAddress:%s",s1.address);

 printf("\nAge of student:%d",s1.age); getch();

 }

1.4 Array of Structures

In programming we may often need to handle many records. For

example, in a class, there may be many numbers of students, say 50

students. So, to keep the records of 50 students we need an array of

structures. This can be written as

struct student

{

int rollno;

char name[20]; char course[15]; float fees;

};

struct student s[50]; //s is an array of structure

Here, s is an array of structure of 50 students, each of which is of type

struct student.

Example: Program for storing records of 50 students and displaying

those records*/

 #include<stdio.h>

 #include<conio.h>

 void main()

 {
 struct student

 {

 int roll;

Introduction to Programming using C Page 96

char name[20]; char address[30]; int age;

 };

struct student s[50]; clrscr();

int n, i;

printf("\nHow many students information do you want to enter?");

scanf("%d",&n);

printf("Enter Student Information:"); for(i=1;i<=n;i++)

{

printf("\nEnter Roll no.:"); scanf("%d",&s[i].rollno);

printf("\nEnter the name of the student:"); scanf("%s",&s[i].name);

printf("\nEnter the course of the student:"); scanf("%s",&s[i].course);

printf("\nEnter the dues of the student:"); scanf("%f",&s[i].fees);

}

printf("\n\nInformation of all students:"); for(i=1;i<=n;i++)

{

printf("\nRoll no.:%d",s[i].rollno);

printf("\nName:%s",s[i].name); printf("\nCourse:%s",s[i].course);

printf("\nSchool dues:%f\n\n",s[i].fees);

}

getch();

}

Check Your Progress

Q.1: Define a structure consisting of two floating point

members, called real and imaginary.

Include the tag complex within the definition. Declare the

variables c1,c2 and c3 to be structure of type complex.

Q.2: Declare a variable “a” to be a structure variable of the

following structure type:

struct account

{

Introduction to Programming using C Page 97

int ac_no; char ac_type;

char name[30]; float balance;

};

and initiaze a as follows: ac_no : 12437 ac_type: Saving name:

Rahul Anand balance: 35000.00

1.5 Structure within a Structure

A structure may be defined as a member of another structure. In

such structures, the declaration of the embedded structure must appear

before the declarations of other structures. For example,

struct date

{

int day; int month; int year;

};

struct student

{

int roll;

char name[20];

char combination[3]; int age;

struct date dob; //structure within structure

} student1,student2;

the structure student contains another structure date as one of its

members.

1.6 Passing Structures to Functions

Structure variables may be passed as arguments and returned from

functions just like other variables. A structure may be passed into a

function as individual member or a separate variable.

Introduction to Programming using C Page 98

Passing individual members of structure to a function: To

pass any individual member of the structure to a function as argument,

we have to use the dot operator to refer to the particular member of the

structure.

For example, a program to display the contents of a structure passing the

individual elements to a function is shown below:

Example: Program to illustrate passing individual structure

.elements to a function.

#include<stdio.h>

 #include<conio.h>

void display(int, float);

void main()

{

struct employee

{

int emp_id; char name[25];

char department[15]; float salary;

};

static struct employee e1={15, "Rahul","IT",8000.00}; clrscr();

/* only emp_id and salary are passed to the display function*/

display(e1.emp_id,e1.salary); //function call

getch();

}

void display(int eid, float s)

{

printf("\n%d\t%5.2f",eid,s);

}

Output: 15 8000.00

When we call the display function using display(e1.emp_id,e1.salary); we

are sending the emp_id and name to function display(). It can be

Introduction to Programming using C Page 99

immediately realized that, passing individual elements would become

more tedious as the number of structure elements increases. A better way

would be to pass the entire structure variable at a time.

Passing entire structure to a function: There may be numerous

structure members (elements) in a structure. Passing these individual

elements as argument to a function would be a tedious task. Just like any

other variable, we can pass an entire structure as a function argument. A

structure is passed as an argument using the call by value method. This

means a copy of each member of the structure is made. This method is

very inefficient, especially when the structure is very big or the function

is called frequently. Use of pointers in such sitiation is more suitable.

In the following program, we are passing a whole structure to a

function.

Example: Program to illustrate passing a whole structure to a function.

#include<stdio.h> #include<conio.h> struct employee

{

int emp_id; char name[25];

char department[10]; float salary;

};

static struct employee e1={10,"Palash","Sales",26000.00}; void display(struct

employee e); //prototype decleration void main()

{

clrscr();

display(e1); /*sending entire employee structure*/ getch();

}

void display(struct employee e)

{

printf("%d\t%s\t%s\t%5.2f", e.emp_id,e.name,e.department,e.salary);

}

Output: 10 Palash Sales 26000.00

Introduction to Programming using C Page 100

Example: Program to illustrate structure working within a function

#include<stdio.h> #include<conio.h> struct item

{

int code; float price;

};

struct item a;

void display(struct item i); //prototype decleration void main()

{

clrscr();

display(a); /*sending entire item structure*/ getch();

}

void display(struct item i)

{

i.code=20; i.price=299.99;

printf("Item Code and Price of the item:%d\t%5.2f", i.code,i.price);

}

Output : 20 299.99

1.7 Pointer to Structure

Instead of passing a copy of the whole structure to the function, we can

pass only the address of the structure in the memory to the function.

Then, the program will get access to every member in the function. This

can be achieved by creating a pointer to the address of a structure using

the indirection operator “*”.

To write a program that can create and use pointer to structures, first, let

us define a structure:

struct item

{

int code; float price;

};

Introduction to Programming using C Page 101

Now let us declare a pointer to struct type item.

struct item *ptr;

Because a pointer needs a memory address to point to, we must

declare an instance of type item.

struct item p;

The following program shows the relationship between a

structure and a pointer.

Example: Program to demonstrate pointers to structure.

#include<stdio.h>

#include<conio.h> void main()

{

struct item

{

int code; float price;

};

struct item i; clrscr();

struct item *ptr; //declare pointer to ptr structure ptr=&i; //

assign address of struct to ptr ptr->code=20;

ptr->price=345.00;

printf("\nItem Code: %d",ptr->code); printf("\tPrice: %5.2f",ptr->price);

getch();

}

Output: Item Code: 20 Price: 345.00

1.8 Union

In some situations we may wish to store information about a person. The

person may be identified either by name or by an identification number, but

never both at the same time. We could define a structure which has both

an integer field and a string field; however, it seems wasteful to allocate

memory for both fields. This is particularly important if we are

Introduction to Programming using C Page 102

maintaining a very large list of persons, such as payroll information for a

large company. In addition, we wish to use the same member name to

access the information for a person.

C provides a data structure which fits our needs for the above scenario,

called a union data type. A union type variable can store objects of

different types at different times; however, at any given moment, it stores

an object of only one of the specified types. Unions are also similar to

structure data type except that members are overlaid one on top of another,

so members of union data type share the same memory.

The declaration of a union type must specify all the possible different types

that may be stored in the variable. The form of such a declaration is

similar to declaring a structure data type. For example, we can declare a

union variable, person, with two members, a string and an integer. Here is

the union declaration:

union human

{

int id;

char name[30];

} person;

This declaration differs from a structure in that, when memory is

allocated for the variable person, only enough memory is allocated to

accommodate the largest of the specified types. The memory allocated for

person will be large enough to store the larger of an integer or an 30

character array. Like structures, we can define a tag for the union, so the

union template may be later referenced by the tag name.

Unions obey the same syntactic rules as structures. We can access

elements with either the dot operator (.) or the right arrow operator (->).

There are two basic applications for union. They are:

Introduction to Programming using C Page 103

i) Interpreting the same memory in different ways.

ii) Creating flexible data structure that can hold different types of data.

Example: Program demonstrating initializing union members and

displaying the contents.

#include<stdio.h> #include<conio.h> void main()

{

union data

{

int a; float b;

};

union data d;

d.a=20;

 d.b= 195.25;

 printf(“\nFirst member is %d”,d.a); printf(“\nSecond member

is

 %5.2f”,d.b); getch();

 }

Output: First member is 16384

Second member is 195.25

Here only the float values are stored and displayed correctly and the

integer values are displayed wrongly as the union only holds one value for

one data type.

1.9 Enumerated Data Types

In addition to the predefined types such as int, char, float etc., C allows

us to define our own special data types, called enumerated data types.

An enumeration type is an integral type that is defined by the user.

The syntax is:

Introduction to Programming using C Page 104

 enum typename {enumeration_list};

Here, enum is keyword, type stands for the identifier that names the type

being defined and enumeration list stands for a list of identifiers that

define integer constants. For example:

enum color {yellow, green, red, blue, pink};

defines the type color which can then be used to declare variables like

this:

color flower=pink;

 color car[]={green, blue, red};

Here, flower is a variable whose value can be any one of the 5 values of

the type color and is initialialized to have the value pink.

Example: Program to illustrate the concept of enumerated data type

#include<stdio.h>

 #include<conio.h>

void main()

{

enum month { jan, feb, mar, apr, may, jun, jul, aug, sep, oct, nov, dec };

month m; clrscr();

for(m=jan;m<=dec;m++) printf("%d\t", m+1);

getch();

}

Output : 1 2 3 4 5 6 7 8 9 10 11 12

In the above declaration, month is declared as an enumerated data

type. It consists of a set of values, jan to dec. Numerically, jan is given

the value 1, feb the value 2, and so on. The variable m is declared to be of

the same type as month, m cannot be assigned any values outside those

specified in the initialization list for the declaration of month.

Introduction to Programming using C Page 105

1.10 Defining Your Own Types (typedef)

Using the keyword typedef we can rename basic or derived data types

giving them names that may suit our program. A typedef declaration is a

declaration with typedef as the storage class. The declarator becomes a

new type. We can use typedef declarations to construct shorter or more

meaningful names for types already defined by C or for types that we have

declared. Typedef names allow us to encapsulate implementation details

that may change.

A typedef declaration is interpreted in the same way as a variable or

function declaration, but the identifier, instead of assuming the type

specified by the declaration, becomes a synonym for the type.

For example: typedef unsigned long int ulong;

The new type (ulong) becomes known to the compiler and is treated the

same as unsigned long int. If we want to declare some more variables of

type unsigned long int, we can use the newly defined type as:

ulong distance;

We can use the typedef keyword to define a structure as folllows:

typedef struct

{

type member1; type member2;

....

}type_name;

type_name can be used to declare structure variables as follows:

type_name variable1,variable2,...;

Introduction to Programming using C Page 106

Check Your Progress

Q.3: State whether the following statements are True (T) or False (F)

i) Collection of different data types can be used to form a structure.

ii) Structure variables can be declared using the tag name anywhere in the

program.

iii) Tag-name is mandatory while defining a structure.

iv) A program may not contain more than one structure.

v) We cannot assign values to the members of a structure.

vi) It is always necessary to define the structure variable within the main()

function.

Q.4: State whether the following statements are True (T) or False (F)

i) It is possible to pass a structure to a function in the same way a variable is

passed.

ii) When one of the fields of a structure is itself a structure, it is called nested

structure.

iii) We cannot create structures within structure in C.

iv) It is illegal for a structure to contain itself as a member.

v) A sstructure can include one or more pointers as members.

Q.5: Fill in the blanks:

i) __________ can be used to access the members of structure variables.

ii) The name of a structure is referred to as __________________ _.

Q.6: Mentions the features of union data type.

 Q.7: Mention the advantages of structure type over the union type.

Introduction to Programming using C Page 107

1.11 Answer to Check Your Progress

Ans. to Q. No. 1: struct complex

{

float real, imaginary;

};

struct complex c1,c2,c3;

Ans. to Q. No. 2: Static struct account a={12437, “Saving”, “Rahul

Anand”, 35000.00};

(a is a static structure variable of type account, whose members are

assigned initial values.)

Ans. to Q. No. 3: i) True, ii) True, iii) False, iv) False, v) False, vi) False

Ans. to Q. No. 4: i) True, ii) True, iii) False, iv) True, v) True

Ans. to Q. No. 5: i) Pointers, ii) tag name

Ans. to Q. No. 6: The main characteristics of Union data type are:

a. The size of union is equal to the size of number of bytes occupied by the

largest data member in it.

b. only one data member in union is active at a time.

Ans. to Q. No. 7: The structure data type can hold many data related to

an entity like person, book, student etc., but a union type holds only one

data active at a time.

Introduction to Programming using C Page 108

1.12 Model Questions

1. What is a structure? How is a structure different from an array?

2. How is structure declared? Define a structure to represent a date.

3. What is meant by array of structure?

4. How are the data elements of a structure accessed and processed?

5. What ismeant by union? Differentiate between structure and union.

6. What is the purpose of typedef feature? How is this feature used with

structure?

Introduction to Programming using C Page 109

Unit-7

Arrays

1.1 Learning Objectives

1.2 Introduction

1.3 Array

1.3.1 Terminologies Associated with Array

1.4 Array Declaration and Initialization

1.5 One-Dimensional Array (1-D Array)

1.5.1 Entering Data Values in 1-D Array

1.5.2 Accessing Values from 1-D Array

1.6 Two-Dimensional Array (2-D Array)

1.6.1 Storage Representation of 2-D Arrays

1.6.2 Entering Data Values in 2-D Array

1.6.3 Accessing Values From 2-D Array

1.7 Check Your Progress

1.8 Model Questions

Introduction to Programming using C Page 110

1.1 Learning Objectives

After going through this unit, you will be able to:

• define an array

• declare and initialize array

• create and access one dimensional array

• create and access two dimensional array.

1.2 Introduction

In the previous unit, we have learnt about the different storage class. We

have also learnt about conditional statements and loop control structures

in the earlier units.

You must have come across the term array many times and wondered

what it is and where it can be applied.

In this unit we will learn to define an array. We will also learn to declare

an array and to initialize an array. In addition to these, different types of

arrays like one dimensional and two dimensional arrays will also be

covered in this unit.

1.3 Array

Array can be defined as a finite, ordered collection of

homogeneous elements that are stored in contiguous memory locations.

In this definition by ‘finite’, we mean that the array contains a fixed

number of elements. By ‘ordered’ we mean that all the elements are

stored in contiguous locations of the computer memory in a linear way.

Introduction to Programming using C Page 111

By ‘homogeneous’ we mean that all the elements in the array must

belong to the same data type.

1.3.1 Terminology

Let us look at some of the terminologies associated with array.

➢ Size: The number of elements in the array.

➢ Type: The type indicates the data type of the array. It can be integer,

floating point or character.

➢ Base: The base of the array is the address of the first element of the

array.

➢ Index: Elements in an array are referred using a subscript or index value.

The index is an integer value which gives the position of the element in

an array. It is denoted by Ai or A [i]

where A is the name of the array and “i” is the subscript or

index. Since array elements are identified by using index or subscripts,

the array is also called an indexed or subscripted variable.

1.4 Array Declaration and Initialization

Declaration of Array: An array can be declared just like we declare any

other variable. We give the data type of the variable followed with the

name of the variable. In case of an array also we give the data type followed

with the name of the array but we also include an additional component

that is the size of the array. The number of elements that the array can

contain needs to be declared at the beginning of the array. This is because

according to the definition of an array, it contains a fixed number of

elements. We can declare an array in the following way:

data_type name_of_array [size_of_array];

In the above declaration syntax, data type can be any of the valid data

types for variables. The data type can be integer, floating point or a

character. It is followed by the name of the array variable and the size of

Introduction to Programming using C Page 112

the array that is given inside square brackets. For example:

int array [5] ; char arr [10] ; float

 balance [3] ;

Need for arrays: To stress the need for arrays let us look at the

following example.

A cricket match has been organized between two teams A and B.

Suppose we do not have the knowledge of arrays and we need to keep

the batting scores of all the players for the team batting first. If we want

to keep the batting score for one player we can declare a variable like the

one below:

int bat_score1;

where we store the score of player 1. To store the score of rest of the 10

players we will need to declare 10 more variables of data type integer as

given below:

int bat_score2, bat_score3, …. bat_score11;

Now if, instead of keeping the scores of just 11 players for one match

suppose we are required to keep score of 3 teams. How many variables

do we create using the above approach? Do we create 33 integer variables?

An easier way to keep the scores of the team would be to use an array.

Instead of declaring 11 variables for keeping the score of 11 players in a

team wouldn’t it be easier to store all the batting values of one team for

one match in one array variable.

int team_a [11];

int team_b [11];

int team_c [11];

Definition of array: When we declare an array, a contiguous memory

location is allocated to that array. Let us look at an example of the

physical representation of array of size 10 in computer’s memory.

Introduction to Programming using C Page 113

Figure: Physical representation of array in memory

In the above figure we can see how array is actually stored in the

memory. Let us consider an integer array of ten elements. Here, the name

of the array is A. The smallest index of an array is called a lower bound

and the highest index is called an upper bound. In case of C, the lower

bound of an array is 0 and the number of elements can be calculated as

the difference between upper and lower bound plus 1.

No of elements = Upper – Lower + 1

The number of elements in the above case will be (9-0+1=10) ten

elements. The base address of the array in this case is 600, since that is

the address of the first element in the array. If we assume that the compiler

to store an integer value needs two bytes of storage then the address of

the second element is 602. Similarly, the rest of the elements are also

stored continuously taking two bytes of storage per integer number.

Array initialization: We can initialize the elements of the array

when we declare the array. Initialization is generally done when we

already know the values of the elements of an array. Just as in declaration,

in initialization also we give the data type of the array, followed by the

name and size of the array. But in addition to these we also provide the

values of the data elements of the array within braces { } separated by

commas. Let us look at how initialization is done using the following

example:

 int A [5] = { 1, 2, 3, 4, 5 };

Introduction to Programming using C Page 114

In the above example, the array A is declared and initialized. The array A

has a size of 5 elements and the values of the five elements have been

initialized as follows:

A [0] = 1

A [1] = 2

A [2] = 3

A [3] = 4

A [4] = 5

The first value that is given in braces is put into the first array location with

subscript value 0. So 1 is kept at location A[0]. Similarly, the second

value inside braces is put into the second array location with subscript

value A[1] and so on till all the given values has been put in the array.

When initialization of values is done, a possibility of not mentioning the

array size in the square brackets [] beforehand is also provided. That is,

we can leave the square brackets empty. For this case the compiler

assumes the array size equal to the number of values provided inside

braces { }. For example, we can write the following statement:

int A [] = { 1, 2, 3, 4, 5, 6 };

In the above statement, the compiler will assume that the size of the

array is 6 since six data values have been given inside the braces.

Check Your Progress

Q.1:What is an array?

Q.2: Give the syntax for declaring an array.

Q.3: Arrays cannot store elements of __________ data types.

Q.4: Can we declare an array without mentioning the size of an array?

Introduction to Programming using C Page 115

1.5 One Dimensional Array (1-D Array)

One dimensional array is a collection of homogeneous data elements with

only one row. It is the simplest form of array. The declaration and

definition that we have learnt so far has been for a single dimensional array.

Address calculation: The elements of an array are stored in contiguous

memory locations. This means that if we know the base address then we

can calculate the address of the other array elements.

Let ‘b’ be the memory location of the first element of the array

and each element requires ‘w’ words of memory space. Then, the

address or location of element A[i] will be the summation of the base

address and the product value of ‘i’ and ‘w’.

Address of element A[i] = b + i X w

For example if we consider the figure 9.1, then the base address, b = 600.

Now if we consider an integer array that requires word size 2, the

address of the 10th element should be 618. If we calculate the address

according to the formula given above we get the same answer.

Address of element A[9] = 600 + (9 X 2) = 600 + 18 = 618

1.5.1 Entering Data Values in 1-D Array

We can insert values into an array at the time of initialization. But apart

from that, we can also insert values into array elements by accessing

them individually. For example, if we have an integer array A of 5

elements, we can insert the values for each of the five array positions as

follows:

A [0] = 11;

A [1] = 22;

A [2] = 33;

A [3] = 44;

A [4] = 55;

Introduction to Programming using C Page 116

In the above statements, the value for each array position has been filled

individually instead of giving the values at the time of initialization and

declaration.

Let us now suppose that we have an array of 50 elements. Also we can

write statements like above only when we have the knowledge of the

element values in advance. Otherwise when we have to take the values

from the user at run time these types of statements do not provide a

suitable solution.

An easier solution to the above problem is to use loop control structure

statements like while, do_while and for loop. Let us look at a code

where with the help of for loop we can easily enter any number of

values at the run time. This can be implemented as:

for (i = 0; i < 5; i++)

{

scanf(“%d”, &A[i]);

}

In the code above a ‘for loop’ is used to traverse from the first element of

the array to the last element. The above ‘scanf’ statement accepts an

integer value and stores it in the address of the given array location. The

array location is moved from the first element position to the last element

position using for loop. “&A[i]” gives the address of the ‘ith’ element of

the array where the current data value needs to be stored.

1.5.2 Accessing Values from 1-D Array

We have learnt in the previous part about entering values in a one

dimensional array. Once the values have been inserted we may need to

access the array for various purposes. The procedure for accessing the

values in a one dimensional array is similar to entering the values in one.

This can be implemented as:

Introduction to Programming using C Page 117

for (i = 0; i < size; i++)

{

printf(“%d”, A[i]);

}

In the above code, a ‘for loop’ is used to traverse from the first element

of the array to its last element. The ‘printf’ statement prints the integer

value which is stored in the address of the given array location. The array

location is moved from the first element position to the last element

position using for loop. “A[i]” gives the value of the element at the ith

position of the array.

Example: Program to enter and access data elements in a 1-D array

include<stdio.h> # include<conio.h> int main()

{

// declaring integer array of size 10 int array[10];

int i;

// Entering data values in array printf(“Enter any 10 integer values:\n”);

for(i=0;i<10;i++)

{

scanf(“%d”,&array[i]);

}

// Traversing and printing data values from array for(i=0;i<10;i++)

{

printf(“array[%d] element is %d\n”,i,array[i]);

}

getch(); return 0;

}

Introduction to Programming using C Page 118

1.6 Two Dimensional Array (2-D Array)

Two- dimensional arrays are collection of homogenous data

elements where the elements are ordered in number of rows and columns.

A two dimensional array can be declared just as we declare a one

dimensional array variable. We give the data type of the array variable

followed with the name of the array variable and the size of the array in

square brackets. In case of a two dimensional array also we give the data

type followed with name and size of the array but we add another value

in brackets to give the second size of the array. The first size

represents the row size and the second size represents the column size

of the array. This is because according to the definition of a two

dimensional array the array is organized in rows and columns.

Declaration of 2-D Array: We can declare a two dimensional array in the

following way:

 data_type name_of_array [row_size] [
column_size];

In the above declaration syntax, data type can be any of the valid data

types for 1-D arrays. The data type can be integer, floating point or a

character. It is followed by the name of the array variable and the row

size and column size of the array that are given inside different square

brackets. For example:

int array [5] [5];

char arr [10] [3] ; float balance [2] [4] ;

When we declare an array, a contiguous memory location is allocated to that

array. Let us look at an example of the physical representation of a two

dimensional array of size [3][4] in computer’s memory.

Introduction to Programming using C Page 119

Columns

R

o

w

s

Name

of the

Array

First subscript Second subscript

Figure: Representation of two-dimensional array A of size [3][4]

In the above figure, we can see that array A is a two dimensional matrix

with three rows and four columns. Two subscripts are needed to

represent an element in a two dimensional array. The first subscript

represents the row value while the second subscript represents the column

value of the array. In C language, similar to single dimensional arrays,

the subscripts value for both rows and column values starts from 0. If we

want to represent the first element in the array we denote it by A[0][0],

where the first subscript value 0 means that the element is located in the

first row and the second subscript value 0 means that the element is

located in the first column. Since we need two subscripts to uniquely

represent any element in this type of array, hence it is known as two

dimensional arrays.

1.6.1 Storage Representation of 2-D Arrays

Two dimensional arrays can be stored in two different ways. They can be

stored in either row-major order or in column-major order.

Row-major order: In row-major order, the elements are stored on a

Introduction to Programming using C Page 120

row-by-row basis. Here, the first row is filled first followed by second

row and so on. This is the common way of storing elements generally for

2-D array. Let us try to understand this concept using an example.

Suppose we need to fill the following 9 element values

{ 1, 2, 3 4, 5, 6, 7, 8, 9 } and in an array B[3][3].

Then, we will first fill up the first row of the array using the first three

element values 1, 2, and 3. Once the first row is filled, we then proceed to

fill up the rest of the rows one at a time using the rest of the data values.

The filled array will have the following structure:

 B =

Column-major order: In column-major order, the elements are stored in a

column-by-column basis. Here, the first column is filled first followed by

second column and so on. Let us use the earlier example itself to understand

this concept. We need to fill the following 9 element values

 {1, 2, 3 4, 5, 6, 7, 8, 9} and in an array B[3][3].

We will first fill up the first column of the array using the first three

element values 1, 2, and 3. Once the first column is filled, we will then

proceed to fill up the rest of the columns one at a time using the rest of

the data values. The filled array will have the following structure:

B =

Address calculation: The address calculation for elements in two-

dimensional arrays will depend on whether the elements are stored in row-

1 2 3

4 5 6

7 8 9

1 4 7

2 5 8

3 6 9

Introduction to Programming using C Page 121

major order or in column-major order. Let ‘b’ be the base address or the

address of the first element in the array and ‘w’ be the word size. Then

the address of an element B[i] [j] when the array has a maximum row

and column size B [m] [n] for both the cases can be calculated using

the formulas below.

➢ For row-major, the address of element

B [i] [j] = b + (i × n + j) × w

where, i represents the row value,

j represents the column value and n represents the column size.

➢ For column-major, the address of element

B [i] [j] = b + (j × m + i) × w

where, i represents the row value, j represents the column value and n

represents the column size.

1.6.2 Entering Data Values in 2-D Array

We can insert values into a 2-D array at the time of initialization.

Insertion of data elements in a 2-D array is similar to insertion of element

in 1-D arrays. Let us look at the example below.

int B [3] [4] = { { 1, 2, 3, 4 },

{ 5, 6, 7, 8 },

{ 9, 10, 11, 12 }

};

In the above initialization, the data elements of the first row are put

together inside braces, followed by data elements of second row inside

second braces and so on till the last row. All these individual braces

representing each row are then put inside one common brace to indicate

that all rows belong to the same array.

We can also insert values into array elements by accessing them

individually. For example, if we have an integer array B [2][3] of 6

elements, we can insert the values for each of the 6 data elements using

Introduction to Programming using C Page 122

their array positions as follows:

B [0] [0] = 11;

B [0] [1] = 22;

B [0] [2] = 33;

B [1] [0] = 44;

B [1] [1] = 55;

B [1] [2] = 66;

In the above statements, the value for each array position in the 2-D

array has been filled individually instead of giving the values at the time

of initialization.

Another easier way to insert data values into elements is to use loop

control structure statements like while, do while and for loop. Let us look

at a code where with the help of nested for loop we can easily enter the

data values for the array B [2] [3] without initialization. This can be

implemented as:

for (i = 0; i < 2; i++)

{

for (j = 0; j < 3; j++)

{

scanf(“%d”, &B[i] [j]);

}

}

In the above code the first ‘for loop’ is used to traverse through the rows

and the second for loop is used to traverse through the columns. For each

iteration of the first for loop, the second for loop traverses from the first

to the last column in the array. “B[i][j]”

Introduction to Programming using C Page 123

gives the address of the element at the “ith” row and “jth” column of the

array where the current data value needs to be stored.

1.6.3 Accessing Values from 2-D Array

We have learnt the different ways of inserting values in a two

dimensional array. Once the values have been inserted we may need to

access the array for various purposes. The procedure for accessing the

values in a two dimensional array is similar to entering the values. This

can be implemented as:

for(i = 0; i < row_size; i++)

{

for (j=0; j< column_size; j++)

{

printf(“%d”, B[i][j]);

}

}

In the above code we have used a nested ‘for loop’ to traverse the two

dimensional array. The first ‘for loop’ is used to traverse through the rows

and the second for loop is used to traverse through the columns. For each

iteration of the first for loop, the second for loop traverses from the first

to the last column in the array. The ‘printf’ statement prints the integer

value which is stored in the address of the given array location. “B[i][j]”

gives the address of the element at the “ith” row and “jth” column of

the array where the current data value needs is stored.

Example: Program to enter and access data elements in a 2-D array

include<stdio.h>

 # include<conio.h>

 void main()

{

Introduction to Programming using C Page 124

int A[10][10], row_size, col_size, i, j; clrscr();

printf(“Give the number of rows you want : “); scanf(“%d”,&row_size);

printf(“Give the number of columns you want : “);

scanf(“%d”,&col_size);

// Entering elements in 2D array printf(“\n Enter elemnts in an array\n”);

for(i=0;i<row_size;i++)

{

for(j=0;j<col_size;j++)

{

scanf(“%d”,&A[i][j]);

}

}

// Accessing and printing elements in 2D array printf(“\n The elements in

the array A are:\n”); for(i=0;i<row_size;i++)

{

for(j=0;j<col_size;j++)

{

printf(“A[%d][%d] = %d\n”,i,j,A[i][j]);

}

printf(“\n”);

}

getch();

}

Introduction to Programming using C Page 125

1.7 Answer to Check Your Progress

Ans. to Q. No. 1: An array can be defined as a finite, ordered collection

of homogeneous elements that are stored in contiguous memory

locations.

Ans. to Q. No. 2: The syntax for declaring an array is:

data_type name_of_array [size_of_array];

Ans. to Q. No. 3: Arrays cannot store elements of different data types.

Ans. to Q. No. 4: Yes, arrays can be declared without mentioning the

size provided we initialize the array with the value of the elements.

Ans. to Q. No. 5: In this case, b=210, i=14 and w=1(since character data

types takes a byte size of 1

 for storage in C).

 So, the address of C [14] = b + (i × w)

 = 210 + (14×1)

 = 224

Ans. to Q. No. 6: Let us assume that row-major storage representation in

used in this case. Then in this

 case, b =100, i= 4, j=8, n= 15, w=4

 So the address for D [4] [8] = b + (i × n + j)

 = 100 + (4×15 + 8) × 4

 = 100 + 68 × 4

 = 100 + 272

 = 372

Check Your Progress

Q.5: The base address of a char array C[15] is 210.What is the memory address

of the C[14]?

Q.6: Find the memory address of D[4] [8] for an array D[10][15] and when the

word size is 4 and base address is 100.

Introduction to Programming using C Page 126

1.8 Model Questions

1. Define array.

2. What is rowmajor order and column major order of

representation?

3. Write a program to input a one dimensional array of 10 elements.

Also write a function to print the elements on computer screen.

4. How is address translation done in case of 1-D arrays?

5. Write a program to input a two dimensional array A[5][3].Also

write a function to print the elements on computer screen.

6. How is address translation done in case of 2-D arrays?

7. What do youmean bymulti-dimensional arrays? Can there be

arrays of more than two dimensions?

8. Why do we need arrays?

Introduction to Programming using C Page 127

Unit-8

Strings

1.1 Learning Objectives

1.2 Introduction.

1.3 String

1.3.1 String Declaration and Initialization

1.3.2 Entering Values in String

1.3.3 Accessing Values in String

1.4 Array of Strings

1.5 String Handling Functions

1.5.1 strlen() Function

1.5.2 strcpy() Function

1.5.3 strcmp() Function

1.5.4 strrev() Function

1.5.5 strcat() Function

1.6 Check Your Progress

1.7 Answer to Check Your Progress

Introduction to Programming using C Page 128

1.1 Learning Objectives

After going through this unit, the learner will be able to learn:

• define a string

• declare and initialize a string

• use string handling functions like strlen(), strcmp(), strcpy()

• use string handling functions like strrev() and strcat()

1.2 Introduction

In the previous unit, we have learnt about arrays and its types. In this unit

we will learn about array of characters i.e., string. We will learn to

define, declare and initialize string. In addition to this different string

handling functions will also be discussed in this unit.

1.3 Strings

An array is a collection of homogeneous elements that are finite and

ordered. Strings are also arrays but of character data type. Let us now

discuss the concept of strings.

An array of characters is called a string. In other words, strings are

arrays where the data type is character. Arrays can be one dimensional or

multidimensional. But strings are one-dimensional array of characters

which are terminated by a null character represented by ‘\0’. Every

string contains one or more characters that comprise the string followed

by a null character ‘\0’ that indicates the end of the string.

1.3.1 String Declaration and Initialization

Declaration of String: A string can be declared just as we declare any

other array variable. We give the data type of the variable followed with

Introduction to Programming using C Page 129

the name and size of the variable. In case of a string, we give the data

type as character followed with the name of the string and the size of the

string. The size of the string should be the sum of the size of a number of

elements that the string can contain plus the size for the null character

that designates the end of the string. So, to hold the null character at the

end of the string, the size of the string should be one more than the

number of characters intended to enter in the string.

We can declare a string in the following way:

char name_of_string [size_of_string];

In the above declaration syntax, data type has to be a

character. It is followed by the name of the string variable and the

size of the string that is given inside square brackets. For example:

char array [5] ;

char name [10] ;

char book [30] ;

Need for Strings: To stress the need for strings let us look at the

following example:

A cricket match has been organized between two teams A and B.

Suppose we do not have the knowledge of string arrays and we need to

keep the name of the best player. If we use a character variable then we

will be able to store only one character of the player’s name.

char name1;

Let us assume that name of the player is “Rahul”. To store this name do

we declare five char variables to store the five characters in the name?

This as shown below does not solve our

problem.

char name1, name2, name3, name4, name5;

An easier way to keep the scores of the team would be to use a character

array or a string. Instead of declaring many variables for keeping the

name of one individual we can store the name in one string variable.

char best_player [6];

Introduction to Programming using C Page 130

Here, we declare a character array of size six since the first five locations

will store the name “Rahul” and the 6th location of the array will store the

null character.

Definition of Strings: When we declare a string, a contiguous memory

location is allocated to that string. Let us look at an example of the

physical representation of string of size 6 which contains the string

“Hello” in computers memory.

Physical representation of string in memory

In the above figure we can see how array is actually stored in the

memory. Each string element is identified with the help of the index or

subscript value. The starting index value for string in C is always 0. In

the above example, the first element of the string is stored in the memory

address 600. For most C compilers char variable requires one byte of

storage. Since strings are stored in contagious memory, so the second

element will be stored next to the first element in location 601.

String Initialization: We can initialize the elements of the string when

we declare the string. Initialization is generally done when we already

know the character values of the string. Just like in declaration, in

initialization also we give the data type of the string, followed by the

name and size of the array. But in addition to these, we also provide the

values of the character elements of the string within braces {} separated

by commas where the values of the elements need to be put inside single

quotes. Let us look at how initialization is done using the following

Introduction to Programming using C Page 131

example.

char A [6] = { ‘H’, ‘e’, ‘l’, ‘l’, ‘o’, ‘\0’ };

In the above example, the array A is declared and initialized. The character

array A has a size of 6 and the values of the elements in the string have

been initialized as follows:

A [0] = H

A [1] = e

A [2] = l

A [3] = l

 A [4] = o A [5] = ‘\0’

The first value that is given in braces is put into the first string location

with subscript value 0. So ‘H’ is kept at location A [0]. Similarly the

second value ‘e’ inside braces is put into the second string location with

subscript value A [1] and so on till all the given values have been put in

the string.

We can also initialize the values of string without mentioning the string

size in the square brackets. That is, we can leave the square brackets

empty. For this case the compiler assumes the string size to be equal to

the number of char values provided inside braces { }. For example, we

can write the following statement:

char A [] = { ‘H’, ‘e’, ‘l’, ‘l’, ‘o’, ‘\0’ };

In the above statement, the compiler will assume that the size of the

array is 6 since six data values have been given inside the braces. There is

another much simpler way to initialize the string. We can also give the

values of the character elements together in double quotes “” instead to

providing them individually. For example, we can write the following

statement:

Introduction to Programming using C Page 132

char A [] = “Hello”;

For this case the compiler assumes the string size to be equal to the

number of char values provided inside braces {} plus one more for the

null character. In this case, we do not need to explicitly provide the null

character at the end of the string. The compiler itself will add the null

character at the end of the string.

1.3.2 Entering Values in String

We can insert values into a string at the time of initialization. But apart

from that, we can also insert values into strings by accessing them

individually. For example, if we have a string A of 6 elements, we can

insert the values for each of the six string positions as follows:

A [0] = ‘H’;

A [1] = ‘e’;

A [2] = ‘l’;

A [3] = ‘l’;

A [4] = ‘o’;

A [5] = ‘\0’;

In the above statements, the value for each string position has been filled

individually instead of giving the values at the time of initialization and

declaration. Let us now suppose that we have a string of 50 elements

which consists in the name of a book.

A solution to the above problem is to use loop control structure

statements like while, do while and for loop. Let us look at a code where

with the help of for loop we can easily enter any number of character

values. This can be implemented as:

for (i = 0; i < 50; i++)

{

scanf(“%c”, &A[i]);

Introduction to Programming using C Page 133

}

In the code above, a ‘for loop’ is used to traverse from the first element

of the string to the last element. The above ‘scanf’ statement accepts a

character value and stores it in the address of the given string location.

The location in the string is moved from the first element position to the

last element position using for loop. “&A[i]” gives the address of the ‘ith’

element of the string where the current character data value needs to be

stored.

An easier solution to this is that instead of providing the data values

individually we can provide them as together as a string. Let us look at the

code below which has implemented this solution.

scanf(“%s”, &A);

The above ‘scanf’ statement accepts a string instead of a single character

and stores it in the address of the given string location. For our case, the

above statement accepts the string and stores it the string variable A.

1.3.3 Accessing Values from Strings

We have learnt in the previous part about entering values in a string.

Once the values have been inserted we may need to access the string for

various purposes. The procedure for accessing the values of a string is

similar to entering the values. This can be implemented in two ways. In

the first way we access the values of the string individually as follows:

for (i = 0; i < 6; i ++)

{

printf(“c”, A[i]);

}

In the above code a ‘for loop’ is used to traverse from the first element of

the string to its last element. The ‘printf’ statement prints the character

Introduction to Programming using C Page 134

value which is stored in the address of the given string location. The

array location is moved from the first element position to the last element

position using “ for loop”. “A[i]” gives the value of the element at the ith

position of the string. In the second way we access the values of the

string together. This can be implemented as:

printf(“%s”, A);

The above ‘printf’ statement prints a string instead of a single character

from the address of the given string location.

Eample: Program to enter and access elements in strings #

include<stdio.h>

include<conio.h> void main()

{

// Program to enter and access elements in strings char str1[10], str2[10];

int i; clrscr();

// Entering values individually printf(“Enter string str1:\n”);

for(i=0;i<9;i++)

{

scanf(“%c”,&str1[i]);

}

// Displaying entered values individually printf(“The values entered in

string1 are:\n”); for(i=0;i<9;i++)

 {

 printf(“Value in string 1 str1[%d] are %c\n”,i,str1[i]);

 }

// Entering values together as a string printf(“Enter string str2:\n”);

scanf(“%s”,&str2);

// Displaying entered values together as a string printf(“The values

entered in string2 are:\n”); printf(“%s\n”,str2);

getch();

Introduction to Programming using C Page 135

 }

1.4 Array of Strings

Array of strings is a two dimensional character array. Similar to two

dimensional arrays, strings can also be of two or more dimensions.

We can declare a two dimensional string in the following way:

char name_of_string [row_size] [column_size] ;

In the above declaration syntax, data type of the string has to be of

character type. It is followed by the name of the string variable and the

row size and column size of the string are given inside different square

brackets. For example:

char array [5] [5];

char student_name [3] [10] ; char book_name [2] [4] ;

Inserting and accessing of values in a two dimensional string is similar to

insertion and access of data elements in 2-D arrays. For example, suppose

we need to store the name of 5 best players in the team. We can declare a

string name [5][30] to keep the names of the persons and this can be

implemented as:

char name [5] [30] ;

In the above declaration, the string variable name has memory to store

five names where each name can have a maximum of 29 characters. A for

loop can be used for traversing from the first row to the 5th row of the

string variable to insert and access the names of the five individuals. This

can be implemented as:

for (i=0 ; i < 5; i++)

{

scanf(“%s”,name[i]);

}

for (i=0 ; i < 5; i++)

Introduction to Programming using C Page 136

{

printf(“%s”,name[i]);

}

Example: Program to enter and access elements in two dimensional

strings */

include<stdio.h> # include<conio.h> void main()

{

// Program to enter and access elements in 2-D strings char name[5][30];

int i; clrscr();

// Entering values in 2D string printf(“Enter first name of five persons:”);

for(i=0;i<5;i++)

{

printf(“\nEnter name of %d person:”,i+1); scanf(“%s”,&name[i]);

}

// Displaying values in 2D string for(i=0;i<5;i++)

{

printf(“\nName of %d person is :”,i+1); printf(“%s”,name[i]);

}

 getch();

 }

Check Your Progress

Q.1 What is a string?

Q.2: Give the syntax for declaring a string.

Introduction to Programming using C Page 137

1.5 String Handling Functions

String handling contains functions that are used for manipulating and

performing special operations on strings. The file “string.h” is available in

the C library and contains many string manipulation functions. We can

use the functions in this file by including the header file “string.h” in our

C program. Some of the common functions are:

• strlen() function

• strcpy() function

• strcmp() function

• strrev() function

• strcat() function

Let us look at these functions in detail in the following section:

1.5.1 strlen() Function

The function strlen() is used for finding the number of characters present

in a given string. It gives back the length of the specified string variable.

The syntax is as follows:

len = strlen(str1);

where ‘len’ is an integer variable which keeps the length of the string

variable ‘str1’. The following program determines the length of a string

using strlen() function.

Example: Program to find the length of a string # include<stdio.h>

include<conio.h> # include<string.h> void main()

{

// Program to find the length of a string char str1[10];

int len; clrscr();

printf(“Enter string :\n”); scanf(“%s”,&str1);

len = strlen(str1);

printf(“The length of string %s is %d”,str1,len); getch();

Introduction to Programming using C Page 138

}

1.5.2 strcpy() Function

The function strcpy() is used for coping the contents of one string to

another string. It copies the contents of the source string to a destination

string. The syntax is as follows:

strcpy(str1,str2);

where ‘str1’ is the destination string and ‘str2’ is the source string. The

following program copies contents of one string to another using strcpy()

function.

Example: Program to copy the contents of one string to another string*/

include<stdio.h> # include<conio.h> # include<string.h> void main()

{

// Program to copy contents of one strin to another string

 char str1[20], str2[10]; clrscr();

printf(“\nEnter string str1:”); scanf(“%s”,&str1); printf(“\nEnter string

str2:”); scanf(“%s”,&str2);

printf(“\nValue of string str1 before copy is :%s”,str1); strcpy(str1,str2);

printf(“\nValue of string str1 after copy is :%s”,str1); getch();

}

1.5.3 strcmp() Function

The function strcmp() is used for comparing the contents of two strings. It

compares the contents of the strings character by character and then

returns an integer as the output. The syntax is as follows:

s = strcmp(str1,str2);

where ‘s’ is an integer and ‘str1’, ‘str2’ are the two strings whose

contents are compared. The value of the s has the following meanings:

If s = 0, then str1 and str2 are equal If s = 1, then str2 > str1

Introduction to Programming using C Page 139

If s = -1, then str1 > str2

The following program compares the values of two strings using

strcmp() function.

Example: Program to compare the contents of two strings*/ #

include<stdio.h>

include<conio.h> # include<string.h> void main()

{

//Program to compare contents of one string to another string

char str1[10], str2[10]; int result;

clrscr();

printf(“\nEnter string str1:”); scanf(“%s”,&str1); printf(“\nEnter string

str2:”); scanf(“%s”,&str2);

result = strcmp(str1,str2); if(result == 0)

printf(“\nString str1 is equal to String str2 “); else

printf(“\nString str1 not equal String str2 “); getch();

}

1.5.4 strrev() Function

The function strrev() is used to reverse the contents of any given string.

It reverses all the contents of the string except the null character which is

used to indicate the end of a string. The syntax is as follows:

strrev(str1);

where ‘str1’ is the string whose contents are to be reversed. The

following program reverses the contents of a string using strrev()

function.

Example: Program to reverse the contents of a string # include<stdio.h>

include<conio.h> # include<string.h> void main()

{

Introduction to Programming using C Page 140

// Program to reverse the contents of a string char str1[10];

clrscr();
 printf(“\nEnter string :”); scanf(“%s”,&str1); printf(“\nOriginal
string: %s”,str1); strrev(str1);

printf(“\nAfter string reversal. String is %s”,str1); getch();

}

1.5.5 strcat() Function

The function strcat() is used to combine the contents of one string with

another string. It concatenates the contents of the source string to a

destination string. The syntax is as follows:

strcat(str1,str2);

where ‘str1’ is the destination string and ‘str2’ is the source string. The

following program concatenates the contents of one string to another

string using strcat() function.

Example: Program to concatenate two strings # include<stdio.h>

include<conio.h> # include<string.h> void main()

{

// Program to concatenate two strings char str1[20], str2[10];

clrscr();

printf(“\nEnter string str1:”); scanf(“%s”,&str1); printf(“\nEnter string

str2:”); scanf(“%s”,&str2); strcat(str1,str2);

printf(“Conactenated string is %s\n”,str1); getch();

}

Introduction to Programming using C Page 141

Check Your Progress

Q.3: Can we declare a string without mentioning the size of a string?

Q.4: What is string handling functions?

Q.5: Can we perform the operations done on strings by string handling

functions without using these library functions?

1.6 Answer to Check Your Progress

Ans. to Q. No. 1: An array of characters is called strings. In other words,

strings are arrays where the data type is character.

Ans. to Q. No. 2: We can declare a string in the following way:

 char name_of_string [size_of_string];

The data type has to be a character. It is followed by the name of the string

variable and the size of the string that is given inside square brackets.

Ans. to Q. No. 3: Yes, we can declare a string without mentioning its size

provided we initialize it with the data elements.

Ans. to Q. No. 4: String handling contains functions that are used for

manipulating and performing special operations on strings. The file

“string.h” is available in the C library and contains many string

manipulation functions.

Ans. to Q. No. 5: Yes, the operations performed by string handling

functions can be performed without using them.

Introduction to Programming using C Page 142

1.7 Model Questions

1. Define strings. How are strings represented in memory?

2. Write a program to find the length of a string without using library

functions.

3. Write a program to copy one string to another without using library

functions.

4. Write a program to combine two strings without using library

functions.

5. Write a program to reverse a string without using library functions.

6. Write a programto compare between two strings without using

library functions.

7. Write a program to take input a number and a string and then display

the string that many numbers of times.

Introduction to Programming using C Page 143

Unit-9

Dynamic Memory

1.1 Learning Objectives

1.2 Introduction

1.3 Dynamic Memory

1.3.1 malloc()

1.3.2 free()

1.3.3 realloc()

1.3.4 calloc()

1.4 Answer to Check Your Progress

1.5 Model Questions

1.1 Learning Objectives

After going through unit the learner will able to learn.

• About dynamic memory

• About malloc()

• About free()

• About realloc()

• About calloc()

1.2 Introduction

Memory allocation refers to the reservation of memory for

storing data. Memory allocation is done in C language in two

ways (i) Static allocation and (ii) Dynamic allocation. Static

allocation is done by using array. The main disadvantage of

static allocation is that the programmer must know the size of the

array or data while writing the program. Generally, it is not

possible to know the required memory in advance. To overcome

this problem dynamic memory allocation is done. Dynamic

Introduction to Programming using C Page 144

memory allocation refers to the allocation of memory during

program execution. The basic difference between static and

dynamic memory allocation is that in static allocation

memory is allocated during the compile time, whereas in

dynamic allocation memory is allocated during the program

execution time.

1.3 Dynamic Memory

Up until now, we've been talking about memory that

pretty much is set up at the beginning of the program run. You

have constant strings here and there, arrays of pre-declared

length, and variables all declared ahead of time. But what if you

have something like the following?

Assignment: Implement a program that will read an arbitrary

number of integers from the

keyboard. The first line the user enters will be the number of

ints to read. The ints themselves

will appear on subsequent lines, one int per line.

Yes, it's that time again: break it up into component parts that

you can implement. You'll

need to read lines of text from the keyboard (there's a cool little

function called fgets() that

can help here), and the first line you'll need to convert to an

integer so you know how many

more lines to read. (You can use atoi(), read “ascii-to-integer”

to do this conversion.) Then

you'll need to read that many more strings and store

them...where?

Here's where dynamic memory can help out--we need to store a

bunch of ints, but we

don't know how many until after the program has already started

running. What we do is find

Introduction to Programming using C Page 145

out how many ints we need, then we calculate how many bytes

we need for each, multiply

those two numbers to get the total number of bytes we need to

store everything, and then ask the

OS to allocate that many bytes for us on the heap for us to use in

the manner we choose. In this

case, we're choosing to store ints in there.

There are three functions we're going to talk about here. Well,

make that four functions,

but one is just a variant of another: malloc() (allocate some

memory for us to use), free()

(release some memory that malloc() gave us earlier),

realloc() (change the size of some

previously allocated memory), and calloc() (just like

malloc(), except clears the memory to zero.)

Using these functions in unison results in a beautifully intricate

dance of data, ebbing and

flowing with the strong tidal pull of the dedicated user's will.

Yeah. Let's cut the noise and get on with it here.

Check Your Progress

Fill in the blanks

Q.1: Memory allocation refers to the reservation of memory

for……………

Q.2: Memory allocation is done in C language in …………..

Q.3: The main disadvantage of …………..is that the programmer

must know the size of the array or data while writing the program

Introduction to Programming using C Page 146

1.3.1 malloc()

malloc(): This function is used to allocate a block of memory.

After allocating the memory it returns a pointer of type void.

This means that one can assign it to any type of pointer. The

syntax for using malloc() is as follows:

ptr =(cast-type *)malloc(no. of bytes);

Here, ptr is a pointer of type cast-type. For example,

int x;

x=(int *)malloc(100);

If it is unable to find the requested amount of memory, malloc()

function returns NULL.

This is the big one: he's the guy that gives you memory when

you ask for it. It returns to you a pointer to a chunk of memory

of a specified number of bytes, or NULL if there is some kind of

error (like you're out of memory). The return type is actually

void*, so it can turn into a pointer to whatever you want.

Since malloc() operates in bytes of memory and you often

operate with other data types e.g. “Allocate for me 12 ints.”),

people often use the sizeof() operator to determine how

many bytes to allocate, for example:

int *p;

p = malloc(sizeof(int) * 12); //

allocate for me 12 ints!

that was pretty much an example of how to use malloc(), too.

You can reference the result using pointer arithmetic or array

notation; either is fine since it's a pointer. But you should really

check the result for errors:

int *p;

p = malloc(sizeof(float) * 3490); //

allocate 3490 floats!

if (p == NULL) {

Introduction to Programming using C Page 147

printf("Horsefeathers! We're probably out of

memory!\n");

exit(1);

}

More commonly, people pack this onto one line:

if ((p = malloc(100)) == NULL) { //

allocate 100 bytes

printf("Ooooo! Out of memory error!\n");

exit(1);

}
Now remember this: you're allocating memory on the heap and

there are only two ways to ever get that memory back: 1) your

program can exit, or 2) you can call free() to free a

malloc()'d chunk. If your program runs for a long time and

keeps malloc()ing and never

free()ing when it should, it's said to “leak” memory. This

often manifests itself in a way such as, “Hey, Bob. I started your

print job monitor program a week ago, and now it's using 13

terabytes of RAM. Why is that?”

Be sure to avoid memory leaks! free() that memory when

you're done with it!

1.3.2 free()

free(): A memory area that is dynamically allocated using either

calloc() or malloc() doesn’t get freed automatically when the

execution terminates. You must explicitly use free() library

function to release the memory space.

Syntax: free(ptr);

This statement frees the space allocated in the memory pointed

by ptr.

Speaking of how to free memory that you've allocated, you do it

with the implausibly-named free() function.

This function takes as its argument a pointer that you've picked

up using malloc() (or

Introduction to Programming using C Page 148

calloc()). And it releases the memory associated with that data.

You really should never use

memory after it has been free()'d. It would be Bad.

So how about an example:

int *p;

p = malloc(sizeof(int) * 37); // 37 ints!

free(p); // on second thought, never mind!

Of course, between the malloc() and the free(), you can do

anything with the memory your twisted little heart desires.

1.3.3 realloc()

realloc(): The size of dynamically allocated memory can be

changed by using realloc() library function.

Syntax: void *realloc(void *ptr, size_t size);

Example: int *ptr = (int *)malloc(sizeof(int)*2);//dynamic

allocation

for two integer value

int *ptr_new;

ptr_new = (int *)realloc(ptr, sizeof(int)*3);// dynamic

reallocation

realloc() is a fun little function that takes a chunk of memory

you allocated with malloc() (or calloc()) and changes the size of

the memory chunk. Maybe you thought you only needed 100 ints

at first, but now you need 200. You can realloc() the block to

give you the space you need.

This is all well and good, except that realloc() might have to

move your data to another

place in memory if it can't, for whatever reason, increase the size

of the current block. It's not

omnipotent, after all.

Introduction to Programming using C Page 149

What does this mean for you, the mortal? Well in short, it means

you should use realloc() sparingly since it could be an expensive

operation. Usually the procedure is to keep track of how much

room you have in the memory block, and then add another big

chunk to it if you run out. So first you allocate what you'd guess

is enough room to hold all the data you'd require, and then if you

happened to run out, you'd reallocate the block with the next best

guess of what you'd require in the future. What makes a good

guess depends on the program. Here's an example that just

allocates more “buckets” of space as needed:

#include <stdlib.h>

#define INITIAL_SIZE 10

#define BUCKET_SIZE 5

static int data_count; // how many ints we

have stored

static int data_size; // how many ints we

can store in this block

static int *data; // the block of data,

itself

int main(void)

{

void add_data(int new_data); // function

prototype

int i;

// first, initialize the data area:

data_count = 0;

data_size = INITIAL_SIZE;

data = malloc(data_size * sizeof(int)); //

allocate initial area

// now add a bunch of data

for(i = 0; i < 23; i++) {

Introduction to Programming using C Page 150

add_data(i);

}

return 0;

}

void add_data(int new_data)

{

// if data_count == data_size, the area is

full and

// needs to be realloc()'d before we can

add another:

if (data_count == data_size) {

// we're full up, so add a bucket

data_size += BUCKET_SIZE;

data = realloc(data, data_size *

sizeof(int));

}

// now store the data

*(data+data_count) = new_data;

// ^^^ the above line could have used array

notation, like so:

// data[data_count] = new_data;

data_count++;

}

In the above code, you can see that a potentially expensive

realloc() is only done after the first 10 ints have been stored, and

then again only after each block of five after that. This beats

doing a realloc() every time you add a number, hands down.

(Yes, yes, in that completely contrived example, since I know

I'm adding 23 numbers right off the get-go, it would make much

more sense to set INITIAL_SIZE to 25 or something, but that

defeats the whole purpose of the example, now, doesn't it?)

Introduction to Programming using C Page 151

1.3.4 calloc()

calloc(): It is a library function to allocate memory. The

difference between calloc() and malloc() is that calloc() initialize

the allocated memory to zero where as malloc() does not

initialize allocated memory to zero.

Declaration Syntax: Following is the declaration for calloc()

function.

void (cast-type*)calloc(no. of elements to be allocated,

size of each element)

For example:

ptr = (int*) calloc(10, sizeof(int));

This statement allocates contiguous space in memory for an

array of 10 elements each of size of int, i.e., 2 bytes.

Since you've already read the section on malloc() (you have,

right?), this part will be easy! Yay! Here's the scoop: calloc() is

just like malloc(), except that it 1) clears the memory to zero for

you, and 2) it takes two parameters instead of one.

The two parameters are the number of elements that are to be in

the memory block, and the size of each element. Yes, this is

exactly like we did in malloc(), except that calloc() is doing the

multiply for you:

// this:

p = malloc(10 * sizeof(int));

// is just like this:

p = calloc(10, sizeof(int));

// (and the memory is cleared to zero when

using calloc())

The pointer returned by calloc() can be used with realloc() and

free() just as if you had used malloc().

Introduction to Programming using C Page 152

The drawback to using calloc() is that it takes time to clear

memory, and in most cases, you don't need it clear since you'll

just be writing over it anyway. But if you ever find yourself

malloc()ing a block and then setting the memory to zero right

after, you can use calloc() to do that in one call.

I wish this section on calloc() were more exciting, with plot,

passion, and violence, like any good Hollywood picture,

but...this is C programming we're talking about. And that should

be exciting in its own right.

Check Your Progress

Q.4: ……………allocation refers to the allocation of

memory during program execution.

Q.5: ………………function is used to allocate a

block of memory.

Q.6: ………..memory area that is dynamically

allocated using either calloc() or malloc()

doesn’t get freed automatically when the execution

terminates.

Q.7: ………..is a memory area that is dynamically

allocated using either calloc() or malloc() doesn’t get

freed automatically when the execution terminates.

Q.8: ………………………is a library function to

allocate memory.

1.4 Answer to Check Your Progress

Ans to Q.1: storing data

Ans to Q.2: two ways.

Ans to Q.3: static allocation

Ans to Q.4: Dynamic memory

Introduction to Programming using C Page 153

Ans to Q.5: malloc()

Ans to Q.6: A free()

Ans to Q.7: free()

Ans to Q.8: calloc()

1.5 Model Questions

1. What is dynamic memory allocation?

2. What are the functions used to allocate memory

dynamically?

3. What is the difference between malloc and calloc?

4. What is the purpose of realloc()?

5. What is static memory allocation and dynamic memory

allocation?

Introduction to Programming using C Page 154

Block-III

Unit-10

Advance Topics

1.1 Learning Objectives

1.2 Introduction

1.3 Pointer Arithmetic

1.4 typedef

1.5 enum

1.6 More struct declarations

1.7 Command Line Arguments

1.8 Multidimensional Arrays

1.9 Casting and promotion

1.10 Incomplete types

1.11 void pointers

1.12 NULL pointers

1.13 More Static

1.14 Typical Multi-file Projects

1.15 The Almighty C Preprocessor

1.15.1 #include

1.15.2 #define

Introduction to Programming using C Page 155

1.15.3 #if and #ifdef

1.16 Pointers to pointers

1.17 Pointers to Functions

1.18 Variable Argument Lists

1.18.1 vprintf()

1.19 Answer to Check Your Progress

1.20 Model Questions

1.1 Learning Objectives

After going through this unit the will able to learn:

• About the Pointer Arithmetic

• About struct declarations

• About Command Line Arguments

• About Void Pointer

• About Null Pointer

• About Variable Argument Lists

1.2 Introduction

 Learning pointer arithmetic clarifies this equivalence

between pointers an arrays. We can obtain the address of an

array element by multiplying the element's index by the number

of bytes that each element occupies and add that product to the

array's starting address. Then, we can access the data at the

resulting address simply by dereferencing that address.

For example, the syntax on the left is equivalent to that on the

right

a[i]

&a[i]

 *(a + i)

 (a + i)

Introduction to Programming using C Page 156

a + i evaluates to the address of the i+1-th element of a

(&a[i]). The rules for pointer arithmetic stipulate that we

multiply the element's index by the size of an element before

adding the array's starting address.

1.3 Pointer Arithmetic

You can perform math on pointers. What does it mean to do that,

though? Well, pay attention, because people use pointer

arithmetic all the time to manipulate pointers and move around

through memory.

You can add to and subtract from pointers. If you have a pointer

to a char, incrementing that pointer moves to the next char in

memory (one byte up). If you have a pointer to an int,

incrementing that pointer moves to the next int in memory

(which might be four bytes up,

or some other number depending on your CPU architecture.) It's

important to know that the

number of bytes of memory it moves differs depending on the

type of pointer, but that's actually

all taken care of for you.

/* This code prints: */

/* 50 */

/* 99 */

/* 3490 */

int main(void)

{

int a[4] = { 50, 99, 3490, 0 };

int *p;

p = a;

Introduction to Programming using C Page 157

while(*p > 0) {

printf("%i\n", *p);

p++; /* go to the next int in memory */

}

return 0;

}

What have we done! How does this print out the values in the

array? First of all, we point p at the first element of the array.

Then we're going to loop until what p points at is less than or

equal to zero. Then, inside the loop, we print what p is pointing

at. Finally, and here's the tricky part, we increment the pointer.

This causes the pointer to move to the next int in memory so

we can print it.

In this case, I've arbitrarily decided (yeah, it's shockingly true: I

just make all this stuff up)

to mark the end of the array with a zero value so I know when to

stop printing. This is known

as a sentinel value...that is, something that lets you know when

some data ends. If this sounds

familiar, it's because you just saw it in the section on strings.

Remember--strings end in a zero

character ('\0') and the string functions use this as a sentinel

value to know where the string

ends.

Lots of times, you see a for loop used to go through pointer stuff.

For instance, here's some

code that copies a string:

char *source = "Copy me!";

char dest[20]; /* we'll copy that string

into here */

char *sp; /* source pointer */

Introduction to Programming using C Page 158

char *dp; /* destination pointer */

for(sp = source, dp = dest; *sp != '\0';

sp++, dp++) {

*dp = *sp;

}

printf("%s\n", dest); /* prints "Copy me!"

*/

Looks complicated! Something new here is the comma operator

(,). The comma operator

allows you to stick expressions together. The total value of the

expression is the rightmost

expression after the comma, but all parts of the expression are

evaluated, left to right.

So let's take apart this for loop and see what's up. In the

initialization section, we point sp

and dp to the source string and the destination area we're going

to copy it to. In the body of the loop, the actual copy takes place.

We copy, using the assignment operator, the character that the

source pointer points to, to the address that the destination

pointer points to. So in this way, we're going to copy the string a

letter at a time.

The middle part of the for loop is the continuation condition--we

check here to see if the source pointer points at a NUL character

which we know exists at the end of the source string.

Of course, at first, it's pointing at 'C' (of the “Copy me!”

string), so we're free to continue.

At the end of the for statement we'll increment both sp and dp

to move to the next character to copy. Copy, copy, copy!

1.4 typedef

This one isn't too difficult to wrap your head around, but

there are some strange nuances to it that you might see out in the

Introduction to Programming using C Page 159

wild. Basically typedef allows you to make up an alias for a

certain type, so you can reference it by that name instead.

Why would you want to do that? The most common reason is

that the other name is a little bit too unwieldy and you want

something more concise...and this most commonly occurs when

you have a struct that you want to use.

struct a_structure_with_a_large_name {

int a;

float b;

};

typedef struct

a_structure_with_a_large_name NAMESTRUCT;

int main(void)

{

/* we can make a variable of the structure

like this: */

struct a_structure_with_a_large_name

one_variable;

/* OR, we can do it like this: */

NAMESTRUCT another_variable;

return 0;

}

In the above code, we've defined a type, NAMESTRUCT, that can

be used in place of the other type, struct

a_structure_with_a_large_name. Note that this is now a

full-blown type; you can use it in function calls, or whereever

you'd use a “normal” type. (Don't tell typedef'd types they're not

normal--it's impolite.)

You're probably also wondering why the new type name is in all

caps. Historically, typedef'd types have been all caps in C by

convention (it's certainly not necessary.) In C++, this is no

Introduction to Programming using C Page 160

longer the case and people use mixed case more often. Since this

is a C guide, we'll stick to

the old ways.

(One thing you might commonly see is a struct with an

underscore before the struct tag name in the typedef. Though

technically illegal, many programmers like to use the same name

for the struct as they do for the new type, and putting the

underscore there differentiates

the two visaully. But you shouldn't do it.)

You can also typedef “anonymous” structs, like this

typedef struct

{

int a;

float b;

} someData;

So then you can define variables as type someData. Very

exciting.

1.5 enum

Sometimes you have a list of numbers that you want to use to

represent different things, but it's easier for the programmer to

represent those things by name instead of number. You can use

an enum to make symbolic names for integer numbers that

programmers can use later in their

code in place of ints.

(I should note that C is more relaxed that C++ is here about

interchanging ints and enums.

We'll be all happy and C-like here, though.)

Note that an enum is a type, too. You can typedef it, you can

pass them into functions, and

so on, again, just like “normal” types.

Introduction to Programming using C Page 161

Here are some enums and their usage. Remember--treat them

just like ints, more or less.

enum fishtypes {

HALIBUT,

TUBESNOUT,

SEABASS,

ROCKFISH

};

int main(void)

{

enum fishtypes fish1 = SEABASS;

enum fishtypes fish2;

if (fish1 == SEABASS) {

fish2 = TUBESNOUT;

}

return 0;

}

Nothing to it--they're just symbolic names for unique numbers.

Basically it's easier for other programmers to read and maintain.

Now, you can print them out using %d in printf(), if you

want. For the most part, though, there's no reason to know what

the actual number is; usually you just want the symbolic

representation.

But, since I know you're dying of curiosity, I might as well tell

you that the enums start at zero by default, and increase from

there. So in the above example, HALIBUT would be 0,

TUBESNOUT would be 1, and ROCKFISH would be 3.

If you want, though, you can override any or all of these:

enum frogtypes {

THREELEGGED=3,

Introduction to Programming using C Page 162

FOUREYED,

SIXHEADED=6

};

In the above case, two of the enums are explicitly defined. For

FOUREYED (which isn't defined), it just increments one from the

last defined value, so its value is 4.

1.6 More struct declarations

Remember how, many moons ago, I mentioned that there were a

number of ways to declare structs and not all of them made a

whole lot of sense. We've already seen how to declare a struct

globally to use later, as well as one in a typedef situation, comme

ca:

/* standalone: */

struct antelope {

int legcount;

float angryfactor;

};

/* or with typedef: */

typedef struct _goatcheese {

char victim_name[40];

float cheesecount;

} GOATCHEESE;

But you can also declare variables along with the struct

declaration by putting them directly afterward:

struct breadtopping {

enum toppingtype type; /* BUTTER, MARGARINE

or MARMITE */

float amount;

} mytopping;

/* just like if you'd later declared: */

Introduction to Programming using C Page 163

struct breadtopping mytopping;

So there we've kinda stuck the variable defintion on the tail end

of the struct definition.

Pretty sneaky, but you see that happen from time to time in that

so-called Real Life thing that I

hear so much about.

And, just when you thought you had it all, you can actually omit

the struct name in many

cases. For example:

typedef struct { /* <--Hey! We left the

name off! */

char name[100];

int num_movies;

} ACTOR_PRESIDENT;

It's more right to name all your structs, even if you don't use

the proper name and only use the typedef'd name, but you still

see those naked structs here and there

1.7 Command Line Arguments

I've been lying to you this whole time, I must admit. I thought I

could hide it from you and not get caught, but you realized that

something was wrong...why doesn't the main() have a

return type or argument list?

Well, back in the depths of time, for some reason, !!!TODO

research!!! it was perfectly acceptable to do that. And it persists

to this day. Feel free to do that, in fact, But that's not telling

you the whole story, and it's time you knew the whole truth!

Welcome to the real world:

int main(int argc, char **argv)

Introduction to Programming using C Page 164

What is all that stuff? Before I tell you, though, you have to

realize that programs, when executed from the command line,

accept arguments from the command line program, and

return a result to the command line program. Using many Unix

shells, you can get the return

value of the program in the shell variable $?. (This doesn't even

work in the windows command

shell--use !!!TODO look up windows return variable!!! instead.)

And you specify parameters

to the program on the command line after the program name. So

if you have a program called

“makemoney”, you can run it with parameters, and then check

the return value, like this:

$ makemoney fast alot

$ echo $?

2

In this case, we've passed two command line arguments, “fast”

and “alot”, and gotten a return value back in the variable $?,

which we've printed using the Unix echo command. How does

the program read those arguments, and return that value?

Let's do the easy part first: the return value. You've noticed that

the above prototype for

main() returns an int. Swell! So all you have to do is either

return that value from main()

somewhere, or, alternatively, you can call the function exit()

with an exit value as the

parameter:

int main(void)

{

int a = 12;

if (a == 2) {

Introduction to Programming using C Page 165

exit(3); /* just like running (from main())

"return 3;" */

}

return 2; /* just like calling exit(2); */

}

For historical reasons, an exit status of 0 has meant success,

while nonzero means failure.

Other programs can check your program's exit status and react

accordingly. Ok that's the return status. What about those

arguments? Well, that whole definition of argv looks too

intimidating to start with. What about this argc instead? It's just

an int, and an easy one at that. It contains the total count of

arguments on the command line, including the name of the

program itself. For example:

$ makemoney fast alot # <-- argc == 3

$ makemoney # <-- argc == 1

$ makemoney 1 2 3 4 5 # <-- argc == 6

(The dollar sign, above, is a common Unix command shell

prompt. And that hash mark (#)

is the command shell comment character in Unix. I'm a Unix-

dork, so you'll have to deal. If you

have a problem, talk to those friendly Stormtroopers over there.)

Good, good. Not much to that argc business, either. Now the

biggie: argv. As you

might have guessed, this is where the arguments themselves are

stored. But what about that

char** type? What do you do with that? Fortunately, you can

often use array notation in the

place of a dereference, since you'll recall arrays and pointers are

related beasties. In this case,

Introduction to Programming using C Page 166

you can think of argv as an array of pointers to strings, where

each string pointed to is one of

the command line arguments:

$ makemoney somewhere somehow

$ # argv[0] argv[1] argv[2] (and argc is 3)

Each of these array elements, argv[0], argv[1], and so on, is

a string. (Remember a string is just a pointer to a char or an

array of chars, the name of which is a pointer to the first

element of the array.)

I haven't told you much of what you can do with strings yet, but

check out the reference section for more information. What you

do know is how to printf() a string using the “%s” format

specifier, and you do know how to do a loop. So let's write a

program that simply prints out its command line arguments, and

then sets an exit status value of 4:

/* showargs.c */

#include <stdio.h>

int main(int argc, char **argv)

{

int i;

printf("There are %d things on the command

line\n", argc);

printf("The program name is \"%s\"\n",

argv[0];

printf("The arguments are:\n");

for(i = 1; i < argc; i++) {

printf(" %s\n", argv[i]);

}

return 4; /* exit status of 4 */

}

Introduction to Programming using C Page 167

Note that we started printing arguments at index 1, since we

already printed argv[0] before that. So sample runs and output

(assuming we compiled this into a program called showargs):

$ showargs alpha bravo

There are 3 things on the command line

The program name is "showargs"

The arguments are:

alpha

bravo

$ showargs

There are 1 things on the command line

The program name is "showargs"

The arguments are:

$ showargs 12

There are 2 things on the command line

The program name is "showargs"

The arguments are:

12

(The actual thing in argv[0] might differ from system to

system. Sometimes it'll contain

some path information or other stuff.)

So that's the secret for getting stuff into your program from the

command line!

1.8 Multidimensional Arrays

Welcome to...the Nth Dimension! Bet you never thought you'd

see that. Well, here we are.

Yup. The Nth Dimension.

Ok, then. Well, you've seen how you can arrange sequences of

data in memory using an

Introduction to Programming using C Page 168

array. It looks something like this:

!!!TODO image of 1d array

Now, imagine, if you will, a grid of elements instead of just a

single row of them:

This is an example of a two-dimensional array, and can be

indexed by giving a row number

and a column number as the index, like this: a[2][10]. You

can have as many dimensions in

an array that you want, but I'm not going to draw them because

2D is already past the limit of

my artistic skills.

So check this code out--it makes up a two-dimensional array,

initializes it in the definition

(see how we nest the squirrely braces there during the init), and

then uses a nested loop (that is,

a loop inside another loop) to go through all the elements and

pretty-print them to the screen.

#include <stdio.h>

int main(void)

{

int a[2][5] = { { 10, 20, 30, 40, 55 }, /*

[2][5] == [rows][cols] */

{ 10, 18, 21, 30, 44 } };

int i, j;

for(i = 0; i < 2; i++) { /* for all the

rows... */

for(j = 0; j < 5; j++) { /* print all the

columns! */

printf("%d ", a[i][j]);

}

Introduction to Programming using C Page 169

/* at the end of the row, print a newline

for the next row */

printf("\n");

}

return 0;

}

As you might well imagine, since there really is no surprise

ending for a program so simple

as this one, the output will look something like this:

10 20 30 40 55

10 18 21 30 44

Hold on for a second, now, since we're going to take this concept

for a spin and learn a little bit more about how arrays are stored

in memory, and some of tricks you can use to access them. First

of all, you need to know that in the previous example, even

though the array has two

rows and is multidimensional, the data is stored sequentially in

memory in this order: 10, 20, 30,

40, 55, 10, 18, 21, 30, 44.

See how that works? The compiler just puts one row after the

next and so on.

But hey! Isn't that just like a one-dimensional array, then? Yes,

for the most part, it technically is! A lot of programmers don't

even bother with multidimensional arrays at all, and just use

single dimensional, doing the math by hand to find a particular

row and column. You can't technically just switch dimensions

whenever you feel like it, Buccaroo Bonzai, because the

types are different. And it'd be bad form, besides.

For instance...nevermind the “for instance”. Let's do the same

example again using a single

Introduction to Programming using C Page 170

dimensional array:

#include <stdio.h>

int main(void)

{

int a[10] = { 10, 20, 30, 40, 55, /* 10

elements (2x5) */

10, 18, 21, 30, 44 };

int i, j;

for(i = 0; i < 2; i++) { /* for all the

rows... */

for(j = 0; j < 5; j++) { /* print all the

columns! */

int index = i*5 + j; /* calc the index */

printf("%d ", a[index]);

}

/* at the end of the row, print a newline

for the next row */

printf("\n");

}

return 0;

}

So in the middle of the loop we've declared a local variable index

(yes, you can do that--remember local variables are local to their

block (that is, local to their surrounding squirrley braces)) and

we calculate it using i and j. Look at that calculation for a bit to

make sure it's correct. This is technically what the compiler does

behind your back when you accessed the array using

multidimensional notation.

1.9 Casting and promotion

Introduction to Programming using C Page 171

Sometimes you have a type and you want it to be a different

type. Here's a great example:

int main(void)

{

int a = 5;

int b = 10;

float f;

f = a / b; /* calculate 5 divided by 10 */

printf("%.2f\n", f);

return 0;

}

And this prints: 0

What? Five divided by 10 is zero? Since when? I'll tell you:

since we entered the world of integer-only division. When you

divide one int by another int, the result is an int, and

any fractional part is thrown away. What do we do if we want

the result to become a float

somewhere along the way so that the result is correct?

Turns out, either integer (or both) in the divide can be made into

a float, and then the result of the divide will be also be a float. So

just change one and everything should work out. “Get on with it!

How do you cast?” Oh yeah--I guess I should actually do it. You

might recall the cast from other parts of this guide, but just in

case, we'll show it again:

f = (float)a / b; /* calculate 5 divided by

10 */

Bam! There is is! Putting the new type in parens in front of the

expression to be converted,

and it magically becomes that type!

Introduction to Programming using C Page 172

You can cast almost anything to almost anything else, and if you

mess it up somehow, it's entirely your fault since the compiler

will blindly do whatever you ask. :-)

1.10 Incomplete types

This topic is a little bit more advanced, but bear with it for a bit.

An incomplete type is simply the declaration of the name of a

particular struct, put there so that you can use pointers to the

struct without actually knowing the fields stored therein. It

most often comes up when people don't want to #include another

header file, which can happen for a variety of different reasons.

For example, here we use a pointer to a type without actually

having it defined anywhere in main(). (It is defined elsewhere,

though.)

struct foo; /* incomplete type! Notice

it's, well, incomplete. */

int main(void)

{

struct foo *w;

w = get_next_wombat(); /* grab a wombat */

process_wombat(w); /* use it somewhere */

return 0;

}

I'm telling you this in case you find yourself trying to include a

header that includes another header that includes the same

header, or if your builds are taking forever because you're

Introduction to Programming using C Page 173

including too many headers, or...more likely you'll see an error

along the lines of “cannot

reference incomplete type”. This error means you've tried to do

too much with the incomplete

type (like you tried to dereference it or use a field in it), and you

need to #include the right

header file with the full complete declaration of the struct.

1.11void pointers

Welcome to THE VOID! As Neo Anderson would say,

“...Whoa.” What is this void thing?

Stop! Before you get confused, a void pointer isn't the same

thing as a void return value from a function or a void

argument list. I know that can be confusing, but there it is. Just

wait

until we talk about all the ways you can use the static

keyword.

A void pointer is a pointer to any type. It is automatically cast

to whatever type you assign

into it, or copy from it. Why would you want to ever use such a

thing? I mean, if you're going to

dereference a pointer so that you can get to the original value,

doesn't the compiler need to know

what type the pointer is so that it can use it properly?

Yes. Yes, it does. Because of that, you cannot dereference a

void pointer. It's against the law, and the C Police will be at

your door faster than you can say Jack Robinson. Before you can

use it, you have to cast it to another pointer type.

Introduction to Programming using C Page 174

How on Valhalla is this going to be of any use then? Why would

you even want a pointer you didn't know the type of?

The Specification: Write a function that can append pointers of

any type to an array. Also write a function that can return a

particular pointer for a certain index.

So in this case, we're going to write a couple useful little

functions for storing off pointers, and returning them later. The

function has be to type-agnostic, that is, it must be able to store

pointers of any type. This is something of a fairly common

feature to libraries of code that manipulate data--lots of them

take void pointers so they can be used with any type of pointer

the programmer might fancy.

Normally, we'd write a linked list or something to hold these, but

that's outside the scope of this book. So we'll just use an array,

instead, in this superficial example. Hmmm. Maybe I should

write a beginning data structures book...

Anyway, the specification calls for two functions, so let's pound

those puppies out right here:

#include <stdio.h>

void *pointer_array[10]; /* we can hold up

to 10 void-pointers */

int index=0;

void append_pointer(void *p)

{

pointer_array[index++] = p;

}

void *get_pointer(int i)

{

return pointer_array[i];

}

Introduction to Programming using C Page 175

Since we need to store those pointers somewhere, I went ahead

and made a global array of them that can be accessed from

within both functions. Also, I made a global index variable to

remember where to store the next appended pointer in the array.

So check the code out for append_pointer() there. How is

all that crammed together into one line? Well, we need to do two

things when we append: store the data at the current index, and

move the index to the next available spot. We copy the data

using the assignment operator, and then notice that we use the

post-increment operator (++) to increment the index.

Remember what post-increment means? It means the increment

is done after the rest of the

expression is evaluated, including that assignment.

The other function, get_pointer, simply returns the void* at

the specified index, i. What you want to watch for here is the

subtle difference between the return types of the two functions.

One of them is declared void, which means it doesn't return

anything, and the other one is declared with a return type of

void*, which means it returns a void pointer. I know, I know,

the duplicate usage is a little troublesome, but you get used to it

in a big hurry. Or else! Finally, we have that code all written--

now how can we actually use it? Let's write a main() function

that will use these functions:

int main(void)

{

char *s = "some data!"; /* s points to a

constant string (char*) */

int a = 10;

int *b;

char *s2; /* when we call get_pointer(),

we'll store them back here */

Introduction to Programming using C Page 176

int *b2;

b = &a; /* b is a pointer to a */

/* now let's store them both, even though

they're different types */

append_pointer(s);

append_pointer(b);

/* they're stored! let's get them back! */

s2 = get_pointer(0); /* this was at index 0

*/

b2 = get_pointer(1); /* this was at index 1 */

return 0;

}

See how the pointer types are interchangable through the

void*? C will let you convert the void* into any other pointer

with impunity, and it really is up to you to make sure you're

getting them back to the type they were originally. Yes, you can

make mistakes here that crash

the program, you'd better believe it. Like they say, “C

gives you enough rope to hang yourself.”

1.12 NULL pointers

I think I have just enough time before the plane lands to talk

about NULL when it comes to

pointers.

NULL simply means a pointer to nothing. Sometimes it's useful

to know if the pointer is

valid, or if it needs to be initialized, or whatever. NULL can be

used as a sentinel value for a

variety of different things. Rememeber: it means “this pointer

points to nothing”! Example:

int main(void)

Introduction to Programming using C Page 177

{

int *p = NULL;

if (p == NULL) {

printf("p is uninitialized!\n");

} else {

printf("p points to %d\n", *p);

}

return 0;

}

Note that pointers aren't pre initialized to NULL when you

declare them--you have to explicitly do it. (No non-static local

variables are pre initialized, pointers included.)

Check Your Progress

Choose the correct one

Q.1: The maximum combined length of the command-line

arguments including the spaces between adjacent arguments is

A. 128 characters

B. 256 characters

C. 67 characters

D. It may vary from one operating system to

another

Q.2: What is a multidimensional array in C Language ?

A. It is like a matrix or table with rows and columns

B. It is an array of arrays

C. To access 3rd tow 2nd element use ary[2][1] as the

index starts from 0 row or column

D. All the above.

Introduction to Programming using C Page 178

Q.3 Void pointers in C are used to implement …………….in C

A. generic functions

B. Data type

C. Variable

D. None of the above

Q.4 What is (void*)0?

A. Representation of NULL pointer

B. Representation of void pointer

C. Error

D. None of above

1.13 More Static

Modern technology has landed me safely here at LAX, and I'm

free to continue writing while I wait for my plane to Ireland. Tell

me you're not jealous at least on some level, and I won't believe

you.

But enough about me; let's talk about programming. (How's that

for a geek pick-up line? If

you use it, do me a favor and don't credit me.)

You've already seen how you can use the static keyword to

make a local variable persist

between calls to its function. But there are other exciting

completely unrelated uses for static

that probably deserve to have their own keyword, but don't get

one. You just have to get used to

Introduction to Programming using C Page 179

the fact that static (and a number of other things in C) have

different meanings depending on

context.

So what about if you declare something as static in the global

scope, instead of local to a function? After all, global variables

already persist for the life of the program, so static can't

mean the same thing here. Instead, at the global scope, static

means that the variable or function declared static is only

visible in this particular source file, and cannot be referenced

from other source files. Again, this definition of static only

pertains to the global scope.

static still means the same old thing in the local scope of the

function.

You'll find that your bigger projects little bite-sized pieces

themselves fit into larger bite-sized pieces (just like that picture

of the little fish getting eaten by the larger fish being eaten by the

fish that's larger, still.) When you have enough related smaller

bite-sized pieces, it often makes sense to put them in their own

source file.

I'm going to rip the example from the section on void pointers

wherein we have a couple

functions that can be used to store any types of pointers.

One of the many issues with that example program (there are all

kinds of shortcomings

and bugs in it) is that we've declared a global variable called

index. Now, “index” is a pretty

common word, and it's entirely likely that somewhere else in the

project, someone will make up

their own variable and name it the same thing as yours. This

could cause all kinds of problems,

Introduction to Programming using C Page 180

not the least of which is they can modify your value of index,

something that is very important

to you.

One solution is to put all your stuff in one source file, and then

declare index to be

static global. That way, no one from outside your source file

is allowed to use it. You are

King! static is a way of keeping the implementation details of

your portion of the code out

of the hands of others. Believe me, if you let other people

meddle in your code, they will do so

with playful abandon! Big Hammer Smash!

So here is a quick rewrite of the code to be stuck it its own file:

/** file parray.c **/

static void *pointer_array[10]; /* now no

one can see it except this file! */

static int index=0; /* same for this one!

*/

/* but these functions are NOT static, */

/* so they can be used from other files: */

void append_pointer(void *p)

{

pointer_array[index++] = p;

}

void *get_pointer(int i)

{

return pointer_array[i];

}

/** end of file parray.c **

Introduction to Programming using C Page 181

What would be proper at this point would be to make a file

called parray.h that has the function prototypes for the two

functions in it. Then the file that has main() in it can #include

parray.h and use the functions when it is all linked together.

1.14 Typical Multi file Projects

Like I'm so fond of saying, projects generally grow too big for a

single file, very similarly to how The Blob grew to be enormous

and had to be defeated by Steve McQueen.

Unfortunately, McQueen has already made his great escape to

Heaven, and isn't here to help you

with your code. Sorry.

So when you split projects up, you should try to do it in bite-

sized modules that make sense

to have in individual files. For instance, all the code responsible

for calculating Fast Fourier

Transforms (a mathematical construct, for those not in the

know), would be a good candidate

for its own source file. Or maybe all the code that controls a

particular AI bot for a game could

be in its own file. It's more of a guideline than a rule, but if

something's not a least in some way

related to what you have in a particular source file already,

maybe it should go elsewhere. A

perfect illustrative question for this scenario might be, “What is

the 3D rendering code doing in

the middle of the sound driver code?”

When you do move code to its own source file, there is almost

always a header file that you should write to go along with it.

The code in the new source file (which will be a bunch of

Introduction to Programming using C Page 182

functions) will need to have prototypes and other things made

visible to the other files so they

can be used. The way the other source files use other files is to

$#include their header files.

So for example, let's make a small set of functions and stick

them in a file called simplemath.c:

/** file simplemath.c **/

int plusone(int a)

{

return a+1;

}

int minusone(int a)

{

return a-1;

}

/** end of file simplemath.c **/

A couple simple functions, there. Nothing too complex, yes? But

by themselves, they're not much use, and for other people to use

them we need to distribute their prototypes in a header

file. Get ready to absorbe this...you should recognize the

prototypes in there, but I've added

some new stuff:

/** file simplemath.h **/

#ifndef _SIMPLEMATH_H_

#define _SIMPLEMATH_H_

/* here are the prototypes: */

int plusone(int a);

int minusone(int a);

#endif

/** end of file simplemath.h **/

Introduction to Programming using C Page 183

Icky. What is all that #ifndef stuff? And the #define and the

#endif? They are boilerplate code (that is, code that is more

often than not stuck in a file) that prevents the header file from

being included multiple times.

The short version of the logic is this: if the symbol

_SIMPLEMATH_H_ isn't defined then define it, and then do all

the normal header stuff. Else if the symbol _SIMPLEMATH_H_

is already defined, do nothing. In this way, the bulk of the header

file is included only once for the build, no matter how many

other files try to include it. This is a good idea, since at best it's a

redundant waste of time to re-include it, and at worst, it can

cause compile-time errors.

Well, we have the header and the source files, and now it's time

to write a file with main()

in it so that we can actually use these things:

/** file main.c **/

#include "simplemath.h"

int main(void)

{

int a = 10, b;

b = plusone(a); /* make that processor

work! */

return 0;

}

/** end of file main.c **/

Check it out! We used double-quotes in the #include instead of

angle brackets! What this tells the preprocessor to do is, “include

this file from the current directory instead of the standard system

directory.” I'm assuming that you're putting all these files in the

same place for the purposes of this exercise.

Introduction to Programming using C Page 184

Recall that including a file is exactly like bringing it into your

source at that point, so, as such, we bring the prototypes into the

source right there, and then the functions are free to be

used in main(). Huzzah!

One last question! How do we actually build this whole thing?

From the command line:

$ cc -o main main.c simplemath.c

You can lump all the sources on the command line, and it'll build

them together, nice and easy.

1.15 The Almighty C Preprocessor

Remember back about a million years ago when you first started

reading this guide and I mentioned something about spinach?

That's right--you remember how spinach relates to the

whole computing process?

Of course you don't remember. I just made it up just now; I've

never mentioned spinach in this guide. I mean, c'mon. What does

spinach have to do with anything? Sheesh!

Let me steer you to a less leafy topic: the C preprocessor. As the

name suggests, this little program will process source code

before the C compiler sees it. This gives you a little bit more

control over what gets compiled and how it gets compiled.

You've already seen one of the most common preprocessor

directives: #include. Other sections of the guide have touched

upon various other ones, but we'll lay them all out here for fun.

1.15.1 #include

The well-known #include directive pulls in source from another

file. This other file should

be a header file in virtually every single case.

On each system, there are a number of standard include files that

you can use for various

Introduction to Programming using C Page 185

tasks. Most popularly, you've seen stdio.h used. How did the

system know where to find

it? Well, each compiler has a set of directories it looks in for

header files when you specify

the file name in angle brackets. (On Unix systems, it commonly

searches the /usr/include

directory.)

If you want to include a file from the same directory as the

source, use double quotes

around the name of the file. Some examples:

/* include from the system include

directory: */

#include <stdio.h>

#include <sys/types.h>

/* include from the local directory: */

#include "mutants.h"

#include "fishies/halibut.h"

As you can see from the example, you can also specify a relative

path into subdirectories out of the main directory. (Under Unix,

again, there is a file called types.h in the directory

/usr/include/sys.)

1.15.2 #define

The #define is one of the more powerful C preprocessor

directives. With it you can declare constants to be substituted

into the source code before the compiler even sees them. Let's

say

you have a lot of constants scattered all over your program and

each number is hard-coded (that

is, the number is written explicitly in the code, like “2”).

Introduction to Programming using C Page 186

Now, you thought it was a constant when you wrote it because

the people you got the specification swore to you up and down

on pain of torture that the number would be “2”, and it

would never change in 100 million years so strike them blind

right now.

Hey--sounds good. You even have someone to blame if it did

change, and it probably won't

anyway since they seem so sure.

Don't be a fool.

The spec will change, and it will do so right after you have put

the number “2” in

approximately three hundred thousand places throughout your

source, they're going to say, “You

know what? Two just isn't going to cut it--we need three. Is that

a hard change to make?”

Blame or not, you're going to be the one that has to change it. A

good programmer will realize that hard-coding numbers like this

isn't a good idea, and one way to get around it is to use a #define

directive. Check out this example:

#define PI 3.14159265358979 /* more pi than

you can handle */

int main(void)

{

float r =10.0;

printf("pi: %f\n", PI);

printf("pi/2: %f\n", PI/2);

printf("area: %f\n", PI*r*r);

printf("circumference: %f\n", 2*PI*r);

return 0;

}

Introduction to Programming using C Page 187

(Typically #defines are all capitals, by convention.) So, hey, we

just printed that thing out

as if it was a float. Well, it is a float. Remember--the C

preprocessor substitutes the value of PI

before the compiler even sees it. It is just as if you had typed it

there yourself.

Now let's say you've used PI all over the place and now you're

just about ready to ship, and

the designers come to you and say, “So, this whole pi thing, um,

we're thinking it needs to be

four instead of three-point-one-whatever. Is that a hard change?”

No problem in this case, no matter how deranged the change

request. All you have to do

is change the one #define at the top, and it's therefore

automatically changed all over the code

when the C preprocessor runs through it:

#define PI 4.0 /* whatever you say, boss */

Pretty cool, huh. Well, it's perhaps not as good as to be “cool”,

but you have not yet witnessed the destructive power of this fully

operational preprocessor directive! You can actually use #define

to write little macros that are like miniature functions that the

preprocessor evaluates, again, before the C compiler sees the

code. To make a macro like this, you give an argument list

(without types, because the preprocessor knows nothing about

types, and then you list how that is to be used. For instance, if we

want a macro that evaluates to a number you pass it times 3490,

we could do the following:

#define TIMES3490(x) ((x)*3490) /* no

semicolon, notice! */

void evaluate_fruit(void)

{

printf("40 * 3490 = %d\n", TIMES3490(40));

}

Introduction to Programming using C Page 188

In that example, the preprocessor will take the macro and expand

it so that it looks like this to the compiler:

void evaluate_fruit(void)

{

printf("40 * 3490 = %d\n", ((40)*3490));

}

(Actually the preprocessor can do basic math, so it'll probably

reduce it directly to “139600”. But this is my example and I'll do

as I please!)

Now here's a question for you: are you taking it on blind faith

that you need all those parenthesis in the macro, like you're some

kind of LISP superhero, or are you wondering, “Why am I

wasting precious moments of my life to enter all these parens?”

Well, you should be wondering! It turns out there are cases

where you can really generate

some evil code with a macro without realizing it. Take a look at

this example which builds

without a problem:

#define TIMES3490(x) x*3490

void walrus_discovery_unit(void)

{

int tuskcount = 7;

printf("(tuskcount+2) * 3490 = %d\n",

TIMES3490(tuskcount + 2));

}

What's wrong here? We're calculating tuskcount+2, and then

passing that through the TIMES3490() macro. But look at what

it expands to:

printf("(tuskcount+2) * 3490 = %d\n",

tuskcount+2*3490);

Instead of calculating (tuskcount+2)*3490, we're calculating

tuskcount+(2*3490), because multiplication comes before addition

Introduction to Programming using C Page 189

in the order of operations! See, adding all those extra parens to

the macro prevents this sort of thing from happening. So

programmers with good

practices will automatically put a set of parens around each

usage of the parameter variable in

the macro, as well as a set of parens around the outside of the

macro itself.

1.15.3 #if and #ifdef

There are some conditionals that the C preprocessor can use to

discard blocks of code so that the compiler never sees them. The

#if directive operates like the C if, and you can pass it an

expression to be evaluated. It is most common used to block off

huge chunks of code like a

comment, when you don't want it to get built:

void set_hamster_speed(int warpfactor)

{

#if 0

uh this code isn't written yet. someone

should really write it.

#endif
}

You can't nest comments in C, but you can nest #if directives all

you want, so it can be very helpful for that.

The other if-statement, #ifdef is true if the subsequent macro is

already defined. There's

a negative version of this directive called #ifndef (“if not

defined”). #ifndef is very commonly

used with header files to keep them from being included multiple

times:

/** file aardvark.h **/

Introduction to Programming using C Page 190

#ifndef _AARDVARK_H_

#define _AARDVARK_H_

int get_nose_length(void);

void set_nose_length(int len);

#endif

/** end of file aardvark.h **/

The first time this file is included, _AARDVARK_H_ is not yet

defined, so it goes to the next line, and defines it, and then does

some function prototypes, and you'll see there at the end, the

whole #if-type directive is culminated with an #endif statement.

Now if the file is included again (which can happen when you

have a lot of header files are including other header files ad

infininininini--cough!), the macro _AARDVARK_H_ will already

be defined, and so the #ifndef

will fail, and the file up to the #endif will be discarded by the

preprocessor.

Another extremely useful thing to do here is to have certain code

compile for a certain platform, and have other code compile for a

different platform. Lots of people like to build software with a

macro defined for the type of platform they're on, such as LINUX

or WIN32. And you can use this to great effect so that your code

will compile and work on different types of systems:

void run_command_shell(void)

{

#ifdef WIN32

system("COMMAND.EXE");

#elifdef LINUX

system("/bin/bash");

#else

#error We don't have no steenkin shells!

#endif

Introduction to Programming using C Page 191

}

A couple new things there, most notable #elifdef. This is the

contraction of “else ifdef”, which must be used in that case. If

you're using #if, then you'd use the corresponding #elif.

Also I threw in an #error directive, there. This will cause the

preprocessor to bomb out right at that point with the given

message.

1.16 Pointers to pointers

You've already seen how you can have a pointer to a

variable...and you've already seen how a pointer is a variable, so

is it possible to have a pointer to a pointer?

No, it's not.

I'm kidding--of course it's possible. Would I have this section of

the guide if it wasn't? There are a few good reasons why we'd

want to have a pointer to a pointer, and we'll give you the simple

one first: you want to pass a pointer as a parameter to a function,

have the function modify it, and have the results reflected back

to the caller.

Note that this is exactly the reason why we use pointers in

function calls in the first place:

we want the function to be able to modify the thing the pointer

points to. In this case, though, the thing we want it to modify is

another pointer. For example:

void get_string(int a, char **s)

{

switch(a) {

case 0:

*s = "everybody";

break;

case 1:

*s = "was";

Introduction to Programming using C Page 192

break;

case 2:

*s = "kung-foo fighting";

break;

default:

*s = "errrrrrnt!";

}

}

int main(void)

{

char *s;

get_string(2, &s);

printf("s is \"%s\"\n", s); /* 's is "kung-

foo fighting"' */

return 0;

}

What we have, above, is some code that will deliver a string

(pointer to a char) back to the caller via pointer to a pointer.

Notice that we pass the address of the pointer s in main().

This gives the function get_string() a pointer to s, and so it

can dereference that pointer to

change what it is pointing at, namely s itself.

There's really nothing mysterious here. You have a pointer to a

thing, so you can dereference the pointer to change the thing. It's

just like before, except for that fact that we're operating on a

pointer now instead of just a plain base type.

What else can we do with pointers to pointers? You can

dynamically make a construction similar to a two-dimensional

array with them. The following example relies on your

knowledge that the function call malloc() returns a chunk of

sequential bytes of memory that you can use as you will. In this

Introduction to Programming using C Page 193

case, we'll use them to create a number of char*s. And we'll

have a pointer to that, as well, which is therefore of type

char**.

int main(void)

{

char **p;

p = malloc(sizeof(char*) * 10); // allocate

10 char*s

return 0;

}

Swell. Now what can we do with those? Well, they don't point to

anything yet, but we can call malloc() for each of them in

turn and then we'll have a big block of memory we can store

strings in.

int main(void)

{

char **p;

int i;

p = malloc(sizeof(char*) * 10); // allocate

10 char*s-worth of bytes

for(i = 0; i < 10; i++) {

*(p+i) = malloc(30); // 30 bytes for each

pointer

// alternatively we could have written,

above:

// p[i] = malloc(30);

// but we didn't.

sprintf(*(p+i), "this is string #%d", i);

}

for(i = 0; i < 10; i++) {

Introduction to Programming using C Page 194

printf("%d: %s\n", i, p[i]); // p[i] same

as *(p+i)

}

return 0;

}

Ok, as you're probably thinking, this is where things get

completely wacko-jacko. Let's

look at that second malloc() line and dissect it one piece at a

time.

You know that p is a pointer to a pointer to a char, or, put

another way, it's a pointer to a

char*. Keep that in mind.

And we know this char* is the first of a solid block of 10,

because we just malloc()'d that many before the for loop. With

that knowledge, we know that we can use some pointer

arithmetic to hop from one to the next. We do this by adding the

value of i onto the char** so

that when we dereference it, we are pointing at the next char*

in the block. In the first iteration

of the loop i is zero, so we're just referring to the first char*.

And what do we do with that char* once we have it? We point

it at the return value of

malloc() which will point it at a fresh ready-to-use 30 bytes

of memory.

And what do we use that memory for (sheesh, this could go on

forever!)--well, we use a variant of printf() called

sprintf() that writes the result into a string instead of to the

console.

And there you have it. Finally, for fun, we print out the results

using array notation to access the strings instead of pointer

arithmetic.

Introduction to Programming using C Page 195

1.17 Pointers to Functions

You've completely mastered all that pointer stuff, right? I mean,

you are the Pointer

Master! No, really, I insist!

So, with that in mind, we're going to take the whole pointer and

address idea to the next phase and learn a little bit about the

machine code that the compiler produces. I know this seems like

it has nothing to do with this section, Pointers to Functions, but

it's background that will only make you stronger. (Provided, that

is, it doesn't kill you first. Admittedly, the chances of death from

trying to understand this section are slim, but you might want to

read it in a padded room just as a precautionary measure.)

Long ago I mentioned that the compiler takes your C source

code and produces machine code that the processor can execute.

These machine code instructions are small (taking between one

and four bytes or memory, typically, with optionally up to, say,

32 bytes of arguments per instruction--these numbers vary

depending on the processor in question). This isn't so important

as the fact that these instructions have to be stored somewhere.

Guess where.

You thought that was a rhetorical command, but no, I really do

want you to guess where,

generally, the instructions are stored.

You have your guess? Good. Is it animal, vegetable, or mineral?

Can you fly in it? Is it a rocketship? Yay!

But, cerebral digression aside, yes, you are correct, the

instructions are stored in memory, just like variables are stored

in memory. Instructions themselves have addresses, and a

special variable in the CPU (generally known as a “register” in

CPU-lingo) points to the address of the

currently executing instruction.

Introduction to Programming using C Page 196

What what? I said “points to” and “address-of”! Suddenly we

have a connection back to pointers and all that...familiar ground

again. But what did I just say? I said: instructions are held in

addresses, and, therefore, you have have a pointer to a block of

instructions. A block of instructions in C is held in a function,

and, therefore, you can have a pointer to a function. Voila!

Ok, so if you have a function, how do you get the address of the

function? Yes, you can use

the &, but most people don't. It's similar to the situation with

arrays, where the name of the array

without square brackets is a pointer to the first element in the

array; the name of the function

without parens is a pointer to the first instruction in the function.

That's the easy part.

The hard part is declaring a variable to be of type “pointer to

function”. It's hard because the syntax is funky:

// declare p as a pointer to a function

that takes two int

// parameters, and returns a float:

float (*p)(int, int);

Again, note that this is a declaration of a pointer to a function. It

doesn't yet point to anything in particular. Also notice that you

don't have to put dummy parameter names in the declaration of

the pointer variable. All right, let's make a function, point to it,

and call it:

int deliver_fruit(char *address, float

speed)

{

printf("Delivering fruit to %s at speed

%.2f\n", address, speed);

return 3490;

Introduction to Programming using C Page 197

}

int main(void)

{

int (*p)(char*,float); // declare a

function pointer variable

p = deliver_fruit; // p now points to the

deliver_fruit() function

deliver_fruit("My house", 5280.0); // a

normal call

p("My house", 5280.0); // the same call,

but using the pointer

return 0;

}

What the heck good is this? The usual reasons are these:

• You want to change what function is called at runtime.

• You have a big array of data including pointers to functions.

• You don't know the function at compile-time; maybe it's in a

shared library that you load a runtime and query to find a

function, and that query returns a pointer to the function. I II

know this is a bit beyond the scope of the section, but bear with

me. know this is a bit beyond the scope of the section, but bear

with me.know this is a bit beyond the scope of the section, but

bear with me.
For example, long ago a friend of mine and I wrote a program

that would simulate a bunch of creatures running around a grid.

The creatures each had a struct associated with them that

held their position, health, and other information. The struct

also held a pointer to a function

that was their behavior, like this:

struct creature {

int xpos;

Introduction to Programming using C Page 198

int ypos;

float health;

int (*behavior)(struct useful_data*);

};

So for each round of the simulation, we'd walk through the list of

creatures and call their behavior function (passing a pointer to a

bunch of useful data so the function could see other

creatures, know about itself, etc.) In this way, it was easy to code

bugs up as having different

behaviors.

Indeed, I wrote a creature called a “brainwasher” that would,

when it got close to another creature, change that creature's

behavior pointer to point to the brainwasher's behavior code! Of

course, it didn't take long before they were all brainwashers, and

then starved and cannibalized

themselves to death. Let that be a lesson to you.

1.18 Variable Argument Lists

Ever wonder, in your spare time, while you lay awake at night

thinking about the C Programming Language, how functions like

printf() and scanf() seem to take an arbitrary

number of arguments and other functions take a specific

number? How do you even write a

function prototype for a function that takes a variable number of

arguments?

(Don't get confused over terminology here--we're not talking

about variables. In this case, “variable” retains its usual boring

old meaning of “an arbitrary number of”.)

Well, there are some little tricks that have been set up for you in

this case. Remember how

Introduction to Programming using C Page 199

all the arguments are pushed onto the stack when passed to a

function? Well, some macros have

been set up to help you walk along the stack and pull arguments

off one at a time. In this way,

you don't need to know at compile-time what the argument list

will look like--you just need to

know how to parse it.

For instance, let's write a function that averages an arbitrary

number of positive numbers.

We can pull numbers off the stack one at a time and average

them all, but we need to know

when to stop pulling stuff off the stack. One way to do this is to

have a sentinel value that you

watch for--when you hit it, you stop. Another way is to put some

kind of information in the

mandatory first argument. Let's do option B and put the count of

the number of arguments to be

averaged in as the first argument to the function.

Here's the prototype for the function--this is how we declare a

variable argument list. The

first argument (at least) must be specified, but that's all:

float average(int count, ...);

It's the magical “...” that does it, see? This lets the compiler

know that there can be more arguments after the first one, but

doesn'r require you to say what they are. So this is how we are

able to pass many or few (but at least one, the first argument)

arguments to the function.

But if we don't have names for the variables specified in the

function header, how do we

use them in the function? Well, aren't we the demanding ones,

actually wanting to use our

Introduction to Programming using C Page 200

function! Ok, I'll tell you!

There is a special type declared in the header stdarg.h called

va_list. It holds data

about the stack and about what arguments have been parsed off

so far. But first you have to tell

it where the stack for this function starts, and fortunately we

have a variable right there at the

beginning of our average() function: a.

We operate on our va_list using a number of preprocessor

macros (which are like

mini-functions if you haven't yet read the section on macros.)

First of all, we use va_start()

to tell our va_list where the stack starts. Then we use

va_arg() repeatedly to pull arguments

off the stack. And finally we use va_end() to tell our

va_list that we're done with it.

(The language specification says we must call va_end(), and

we must call it in the same

function from which we called va_start(). This allows the

compiler to do any cleanup that is

necessary, and keeps the Vararg Police from knocking on your

door.

So an example! Let's write that average() function.

Remember: va_start(),

va_arg(), va_arg(), va_arg(), etc., and then va_end()!

float average(int count, ...)

{

float ave = 0;

int i;

va_list args; // here's our va_list!

Introduction to Programming using C Page 201

va_start(args, count); // tell it the stack

starts with "count"

// inside the while(), pull int args off

the stack:

for(i = 0; i < count; i++) {

int val = va_arg(args, int); // get next

int argument

ave += (float)val; // cast the value to a

float and add to total

}

va_end(args); // clean this up

return ave / count; // calc and return the

average

}

So there you have it. As you see, the va_arg() macro pulls the

next argument off the stack of the given type. So you have to

know in advance what type the thing is. We know for our

average() function, all the types are ints, so that's ok. But

what if they're different types

mixed all together? How do you tell what type is coming next?

Well, if you'll notice, this is exactly what our old friend

printf() does! It knows what

type to call va_arg() with, since it says so right in the format

string.

1.18.1 vprintf()

There are a number of functions that helpfully accept a va_list

as an argument that you

can pass. This enables you to wrap these functions up easily in

your own functions that take a

variable number of arguments themselves. For instance:

Introduction to Programming using C Page 202

Assignment: Implement a version of printf() called

timestamp_printf() that works

exactly like printf() except it prints the time followed by a

newline followed by the data

output specified by the printf()-style format string.

Holy cow! At first glance, it looks like you're going to have to

implement a clone of

printf() just to get a timestamp out in front of it! And

printf() is, as we say in the industry,

“nontrivial”! See you next year!

Wait, though--wait, wait...there must be a way to do it easily, or

this author is complete

insane to give you this assignment, and that couldn't be. Fruit!

Where is my cheese!?

Blalalauugh!!

Ahem. I'm all right, really, Your Honor. I'm looking into my

crystal ball and I'm seeing...a

type va_list in your future. In fact, if we took our variable

argument list, processed it with

va_start() and got our va_list back, we could, if such a

thing existed, just pass it to an

already-written version of printf() that accepted just that

thing.

Welcome to the world of vprintf()! It does exactly that, by

Jove! Here's a lovely

prototype:

int vprintf(const char *format,

va_list args);

Introduction to Programming using C Page 203

All righty, so what building blocks do we need for this

assignment? The spec says we need

to do something just like printf(), so our function, like

printf() is going to accept a format

string first, followed by a variable number of arguments,

something like this:

int timestamp_printf(char *format,

...);

But before it prints its stuff, it needs to output a timestamp

followed by a newline. The

exact format of the timestamp wasn't specified in the assignment,

so I'm going to assume

something in the form of “weekday month day hh:mm:ss year”.

By amazing coincidence, a

function exists called ctime() that returns a string in exactly

that format, given the current

system time.

So the plan is to print a timestamp, then take our variable

argument list, run it through

va_start to get a va_list out of it, and pass that va_list

into vprintf() and let it work

its already-written printf() magic. And...GO!

#include <stdio.h>

#include <stdarg.h>

#include <time.h> // for time() and

ctime();

int timestamp_printf(char *format, ...)

{

va_list args;

time_t system_time;

Introduction to Programming using C Page 204

char *timestr;

int return_value;

system_time = time(NULL); // system time in

seconds since epoch

timestr = ctime(&system_time); // ready-to-

print timestamp

// print the timestamp:

printf("%s", timestr); // timestr has a

newline on the end already

// get our va_list:

va_start(args, format);

// call vprintf() with our arg list:

return_value = vprintf(format, args);

// done with list, so we have to call

va_end():

va_end(args);

// since we want to be *exactly* like

printf(), we have saved its

// return value, and we'll pass it on right

here:

return return_value;

}

int main(void)

{

// example call:

timestamp_printf("Brought to you by the

number %d\n", 3490);

return 0;

}

And there you have it! Your own little printf()-like

functionality!

Introduction to Programming using C Page 205

Now, not every function has a “v” in front of the name for

processing variable argument

lists, but most notably all the variants of printf() and

scanf() do, so feel free to use them as

you see fit!

TODO order of operations, arrays of pointers to functions.

Check Your Progress

Q.5: Fill in the blanks

i. The well-known ……………..directive pulls in source from

another file.

ii. The…………… is one of the more powerful C preprocessor

directives.

iii. There are some conditionals that the………. can use to discard

blocks of code so that the compiler never sees them.

iv. A function exists called……… that returns a string in exactly that

format, given the current system time.

1.19 Answer to Check Your Progress

Ans to Q.1: D

Ans to Q.2: D

Ans to Q.3: A

Ans to Q.4: A

Ans to Q.5: i. #include ii. #define iii. C preprocessor iv.

ctime()

1.20Model Questions

Introduction to Programming using C Page 206

1. What is Command Line Arguments?

2. What is Multidimensional Arrays? Explain with the help of

example.

3. What is Null Pointer?

4. Explain Pointer Arithmetic with an example.

5. What is the most common preprocessor directives?

Unit 11

Standard I/O Library

1.1 Learning Objectives

1.2 Introduction

1.3 fopen()

1.4 freopen()

1.5 fclose()

1.6 printf(), fprintf()

1.7 scanf(), fscanf()

1.8 gets(), fgets()

Introduction to Programming using C Page 207

1.9 getc(), fgetc(), getchar()

1.10 puts(), fputs()

1.11 putc(), fputc(), putchar()

1.12 fseek(), rewind()

1.13 ftell()

1.14 fgetpos(), fsetpos()

1.15 ungetc()

1.16 fread()

1.17 fwrite()

1.18 feof(), ferror(), clearerr()

1.19 perror()

1.20 remove()

1.21 rename()

1.22 tmpfile()

1.23 tmpnam()

1.24 setbuf(), setvbuf()

1.25 fflush()

1.26 Check Your Progress

1.27 Model Questions

1.1 Learning Objectives

After going through this unit, the learner will be able to:

• learn about header file and its use

• learn formatted input function like scanf()

• learn formatted output function like printf()

• describe control string used in printf() and scanf()

• describe unformatted input functions like getch(), getche(),

getchar(), gets()

• formatted input functions like putch(), putchar(), puts()

Introduction to Programming using C Page 208

1.2 Introduction

A computer program basically consists of three sections i.e,

input, processing, and output. The input section receives data

from the environment through some input device like keyboard,

mouse, secondary storage etc. The processing section is

responsible for calculating the required data or output. Different

logic like selective logic and iterative logic are implemented in

this section. The last section is the output section.

This section is responsible for providing output in the

appropriate manner. C language provides a set of library

functions for doing these activities.

These functions are predefined and stored in some file known as

header file.

1.3 fopen()

Opens a file for reading or writing.

Prototypes
 #include <stdio.h>

FILE *fopen(const char *path, const

char *mode);

Description

The fopen() opens a file for reading or writing.

Parameter path can be a relative or fully-qualified path and file

name to the file in

question.

Paramter mode tells fopen() how to open the file (reading,

writing, or both), and whether

or not it's a binary file. Possible modes are:

r

Open the file for reading (read-only).

Introduction to Programming using C Page 209

w

Open the file for writing (write-only). The file is created

if it doesn't exist.

r+

Open the file for reading and writing. The file has to

already exist.

w+

Open the file for writing and reading. The file is created

if it doesn't already exist.

a

Open the file for append. This is just like opening a file

for writing, but it positions the file pointer at the end of the file,

so the next write appends to the end. The file is created if it

doesn't exist.

a+

Open the file for reading and appending. The file is

created if it doesn't exist.

Any of the modes can have the letter “b” appended to the end, as

is “wb” (“write binary”), to signify that the file in question is a

binary file. (“Binary” in this case generally means that the

file contains non-alphanumeric characters that look like garbage

to human eyes.) Many systems (like Unix) don't differentiate

between binary and non-binary files, so the “b” is extraneous.

But if your data is binary, it doesn't hurt to throw the “b” in

there, and it might help someone who is trying to port your code

to another system.

Return Value

fopen() returns a FILE* that can be used in subsequent file-

related calls.

If something goes wrong (e.g. you tried to open a file for read

that didn't exist), fopen()

Introduction to Programming using C Page 210

will return NULL.

Example

int main(void)

{

FILE *fp;

if ((fp = fopen("datafile.dat", "r")) ==

NULL) {

printf("Couldn't open datafile.dat for

reading\n");

exit(1);

}

// fp is now initialized and can be read

from

return 0;

}

See Also

fclose()

freopen()

1.4 freopen()

Reopen an existing FILE*, associating it with a new path

Prototypes
#include <stdio.h>

FILE *freopen(const char *filename, const

char *mode, FILE *stream);

Description

Let's say you have an existing FILE* stream that's already open,

but you want it to suddenly use a different file than the one it's

Introduction to Programming using C Page 211

using. You can use freopen() to “re-open” the stream with a new

file.

Why on Earth would you ever want to do that? Well, the most

common reason would be if you had a program that normally

would read from stdin, but instead you wanted it to read from a

file. Instead of changing all your scanf()s to fscanf()s, you could

simply reopen stdin on the file you wanted to read from.

Another usage that is allowed on some systems is that you can

pass NULL for filename, and specify a new mode for stream. So

you could change a file from “r+” (read and write) to just “r”

(read), for instance. It's implementation dependent which modes

can be changed.

When you call freopen(), the old stream is closed. Otherwise,

the function behaves just like the standard fopen().

Return Value

freopen() returns stream if all goes well.

If something goes wrong (e.g. you tried to open a file for read

that didn't exist), fopen()

will return NULL.

Example

#include <stdio.h>

int main(void)

{

int i, i2;

scanf("%d", &i); // read i from stdin

// now change stdin to refer to a file

instead of the keyboard

freopen("someints.txt", "r", stdin);

scanf("%d", &i2); // now this reads from

the file "someints.txt"

Introduction to Programming using C Page 212

printf("Hello, world!\n"); // print to the

screen

// change stdout to go to a file instead of

the terminal:

freopen("output.txt", "w", stdout);

printf("This goes to the file

\"output.txt\"\n");

// this is allowed on some systems--you can

change the mode of a file:

freopen(NULL, "wb", stdout); // change to

"wb" instead of "w"

return 0;

}

See Also

fclose()

fopen()

1.5 fclose()

The opposite of fopen()--closes a file when you're done with it

so that it frees system resources.

Prototypes

#include <stdio.h>

int fclose(FILE *stream);

Description

When you open a file, the system sets aside some resources to

maintain information about that open file. Usually it can only

open so many files at once. In any case, the Right Thing to do

is to close your files when you're done using them so that the

system resources are freed.

Introduction to Programming using C Page 213

Also, you might not find that all the information that you've

written to the file has actually

been written to disk until the file is closed. (You can force this

with a call to fflush().)

When your program exits normally, it closes all open files for

you. Lots of times, though, you'll have a long-running program,

and it'd be better to close the files before then. In any case, not

closing a file you've opened makes you look bad. So, remember

to fclose() your file when you're done with it!

Return Value

On success, 0 is returned. Typically no one checks for this. On

error EOF is returned.

Typically no one checks for this, either.

Example

FILE *fp;

fp = fopen("spoonDB.dat", r"); // (you

should error-check this)

sort_spoon_database(fp);

fclose(fp); // pretty simple, huh.

See Also
fopen()

1.6 printf(), fprintf()

Print a formatted string to the console or to a file.

Prototypes
#include <stdio.h>

int printf(const char *format, ...);

int fprintf(FILE *stream, const char

*format, ...);

Description

Introduction to Programming using C Page 214

These functions print formatted strings to a file (that is, a FILE*

you likely got from fopen()), or to the console (which is

usually itself just a special file, right?)

The printf() function is legendary as being one of the most

flexible outputting systems ever devisied. It can also get a bit

freaky here or there, most notably in the format string. We'll

take it a step at a time here.

The easiest way to look at the format string is that it will print

everything in the string as-is, unless a character has a percent

sign (%) in front of it. That's when the magic happens: the next

argument in the printf() argument list is printed in the way

described by the percent code.

Here are the most common percent codes:

%d

Print the next argument as a signed decimal number, like

3490. The argument printed

this way should be an int.

%f

Print the next argument as a signed floating point

number, like 3.14159. The

argument printed this way should be a float.

%c

Print the next argument as a character, like 'B'. The

argument printed this way should

be a char.

%s

Print the next argument as a string, like "Did you

remember your mittens?".

The argument printed this way should be a char* or char[].

%%

Introduction to Programming using C Page 215

No arguments are converted, and a plain old run-of-the-

mill percent sign is printed.

This is how you print a '%' using printf)().

So those are the basics. I'll give you some more of the percent

codes in a bit, but let's get some more breadth before then.

There's actually a lot more that you can specify in there after the

percent sign.

For one thing, you can put a field width in there--this is a

number that tells printf() how

many spaces to put on one side or the other of the value you're

printing. That helps you line

things up in nice columns. If the number is negative, the result

becomes left-justified instead of

right-justified. Example:

printf("%10d", x); /* prints X on the right

side of the 10-space field */

printf("%-10d", x); /* prints X on the left

side of the 10-space field */

If you don't know the field width in advance, you can use a little

kung-foo to get it from the argument list just before the argument

itself. Do this by placing your seat and tray tables in the fully

upright position. The seatbelt is fastened by placing the--

cough. I seem to have been doing way too much flying lately.

Ignoring that useless fact completely, you can specify a dynamic

field width by putting a * in for the width. If you are not willing

or able to perform this

task, please notify a flight attendant and we will reseat you.

int width = 12;

int value = 3490;

printf("%*d\n", width, value);

Introduction to Programming using C Page 216

You can also put a “0” in front of the number if you want it to be

padded with zeros:

int x = 17;

printf("%05d", x); /* "00017" */

When it comes to floating point, you can also specify how many

decimal places to print by

making a field width of the form “x.y” where x is the field

width (you can leave this off if you

want it to be just wide enough) and y is the number of digits

past the decimal point to print:

float f = 3.1415926535;

printf("%.2f", f); /* "3.14" */

printf("%7.3f", f); /* " 3.141" <-- 7

spaces across */

Ok, those above are definitely the most common uses of

printf(), but there are still more

modifiers you can put in after the percent and before the field

width:

0

This was already mentioned above. It pads the spaces

before a number with zeros, e.g.

"%05d".

-

This was also already mentioned above. It causes the

value to be left-justified in the

field, e.g. "%-5d".

' ' (space)

This prints a blank space before a positive number, so

that it will line up in a column

along with negative numbers (which have a negative sign in

front of them). "% d".

Introduction to Programming using C Page 217

+

Always puts a + sign in front of a number that you print

so that it will line up in a

column along with negative numbers (which have a negative

sign in front of them).

"%+d".

This causes the output to be printed in a different form

than normal. The results vary

based on the specifier used, but generally, hexidecimal output

("%x") gets a "0x"

prepended to the output, and octal output ("%o") gets a "0"

prepended to it. These

are, if you'll notice, how such numbers are represented in C

source. Additionally,

floating point numbers, when printed with this # modified, will

print a trailing decimal

point even if the number has no fractional part. Example: "%#x".

Now, I know earlier I promised the rest of the format

specifiers...so ok, here they are:

%i

Just like %d, above.

%o

Prints the integer number out in octal format. Octal is a

base-eight number

representation scheme invented on the planet Krylon where all

the inhabitants have

only eight fingers.

%u

Just like %d, but works on unsigned ints, instead of ints.

%x or %X

Introduction to Programming using C Page 218

Prints the unsigned int argument in hexidecimal (base-

16) format. This is for

people with 16 fingers, or people who are simply addicted hex,

like you should

be. Just try it! "%x" prints the hex digits in lowercase, while

"%X" prints them in

uppercase.

%F

Just like “%f”, except any string-based results (which can

happen for numbers like

infinity) are printed in uppercase.

%e or %E

Prints the float argument in exponential (scientific)

notation. This is your classic

form similar to “three times 10 to the 8th power”, except printed

in text form: “3e8”.

(You see, the “e” is read “times 10 to the”.) If you use the "%E"

specifier, the the

exponent “e” is written in uppercase, a la “3E8”.

%g or %G

Another way of printing doubles. In this case the

precision you specific tells it how

many significant figures to print.

%p

Prints a pointer type out in hex representation. In other

words, the address that the

pointer is pointing to is printed. (Not the value in the address, but

the address number

itself.)

%n

Introduction to Programming using C Page 219

This specifier is cool and different, and rarely needed. It

doesn't actually print anything, but stores the number of

characters printed so far in the next pointer argument in the list.

int numChars;

float a = 3.14159;

int b = 3490;

printf("%f %d%n\n", a, b, &numChars);

printf("The above line contains %d

characters.\n", numChars);

The above example will print out the values of a and b, and then

store the number of characters printed so far into the variable

numChars. The next call to printf() prints out that result.

So let's recap what we have here. We have a format string in the

form:

"%[modifier][fieldwidth][.precision][length

modifier][formatspecifier]"

Modifier is like the "-" for left justification, the field width is

how wide a space to print the result in, the precision is, for

floats, how many decimal places to print, and the format

specifier is like %d.

That wraps it up, except what's this “lengthmodifier” I put up

there?! Yes, just when you thought things were under control, I

had to add something else on there. Basically, it's to tell

printf() in more detail what size the arguments are. For

instance, char, short, int, and long are all integer types, but

they all use a different number of bytes of memory, so you can't

use plain old “%d” for all of them, right? How can printf()

tell the difference?

The answer is that you tell it explicitly using another optional

letter (the length modifier, this) before the type specifier. If you

Introduction to Programming using C Page 220

omit it, then the basic types are assumed (like %d is for int, and

%f is for float).

Here are the format specifiers:

h

Integer referred to is a short integer, e.g. “%hd” is a

short and “%hu” is an

unsigned short.

l (“ell”)

Integer referred to is a long integer, e.g. “%ld” is a

long and “%lu” is an unsigned

long.

hh

Integer referred to is a char integer, e.g. “%hhd” is a

char and “%hhu” is an

unsigned char.

ll (“ell ell”)

Integer referred to is a long long integer, e.g. “%lld”

is a long long and “%llu”

is an unsigned long long.

I know it's hard to believe, but there might be still more

format and length specifiers on

your system. Check your manual for more information.

Return Value

Example

int a = 100;

float b = 2.717;

char *c = "beej!";

char d = 'X';

int e = 5;

printf("%d", a); /* "100" */

printf("%f", b); /* "2.717000" */

Introduction to Programming using C Page 221

printf("%s", c); /* "beej!" */

printf("%c", d); /* "X" */

printf("110%%"); /* "110%" */

printf("%10d\n", a); /* " 100" */

printf("%-10d\n", a); /* "100 " */

printf("%*d\n", e, a); /* " 100" */

printf("%.2f\n", b); /* "2.71" */

printf("%hhd\n", c); /* "88" <-- ASCII code

for 'X' */

printf("%5d %5.2f %c\n", a, b, d); /* " 100

2.71 X" */

See Also
sprintf(), vprintf(), vfprintf(), vsprintf()

1.7 scanf(), fscanf()

Read formatted string, character, or numeric data from the console or from a

file.

#include <stdio.h>

int scanf(const char *format, ...);

int fscanf(FILE *stream, const char

*format, ...);

Description

The scanf() family of functions reads data from the

console or from a FILE stream, parses it, and stores the results

away in variables you provide in the argument list.

The format string is very similar to that in printf() in that you

can tell it to read a "%d", for instance for an int. But it also has

additional capabilities, most notably that it can eat up other

characters in the input that you specify in the format string.

But let's start simple, and look at the most basic usage first

before plunging into the depths of the function. We'll start by

reading an int from the keyboard:

Introduction to Programming using C Page 222

int a;

scanf("%d", &a);

scanf() obviously needs a pointer to the variable if it is going

to change the variable

itself, so we use the address-of operator to get the pointer.

In this case, scanf() walks down the format string, finds a

“%d”, and then knows it needs to read an integer and store it in

the next variable in the argument list, a.

Here are some of the other percent-codes you can put in the

format string:

%d

Reads an integer to be stored in an int. This integer can

be signed.

%f (%e, %E, and %g are equivalent)

Reads a floating point number, to be stored in a float.

%s

Reads a string. This will stop on the first whitespace

character reached, or at the specified field width (e.g. “%10s”),

whichever comes first.

And here are some more codes, except these don't tend to be

used as often. You, of course, may use them as often as you

wish!

%u

Reads an unsigned integer to be stored in an unsigned int.

%x (%X is equivalent) Reads an unsigned hexidecimal integer to

be stored in an unsigned int.

%o

Reads an unsigned octal integer to be stored in an

unsigned int.

%i

Introduction to Programming using C Page 223

Like %d, except you can preface the input with “0x” if

it's a hex number, or “0” if it's an octal number.

%c

Reads in a character to be stored in a char. If you

specify a field width (e.g. “%12c”,

it will read that many characters, so make sure you have an array

that large to hold them.

%p

Reads in a pointer to be stored in a void*. The format of

this pointer should be the same as that which is outputted with

printf() and the “%p” format specifier.

%n

Reads nothing, but will store the number of characters

processed so far into the next int parameter in the argument

list.

%%

Matches a literal percent sign. No conversion of

parameters is done. This is simply

how you get a standalone percent sign in your string without

scanf() trying to do something with it.

%[

This is about the weirdest format specifier there is. It

allows you to specify a set of characters to be stored away (likely

in an array of chars). Conversion stops when a character that is

not in the set is matched.

For example, %[0-9] means “match all numbers zero through

nine.” And %[AD-G34]means “match A, D through G, 3, or 4”.

Now, to convolute matters, you can tell scanf() to match

characters that are not in the set by putting a caret (^) directly

Introduction to Programming using C Page 224

after the %[and following it with the set, like this: %[^A-C],

which means “match all characters that are not A through C.”

To match a close square bracket, make it the first character in the

set, like this:

%[]A-C] or %[^]A-C]. (I added the “A-C” just so it was clear

that the “]” was first in the set.)

To match a hyphen, make it the last character in the set: %[A-C-

].

So if we wanted to match all letters except “%”, “^”, “]”, “B”,

“C”, “D”, “E”, and “-”, we could use this format string:

%[^]%^B-E-].

So those are the basics! Phew! There's a lot of stuff to know, but,

like I said, a few of these format specifiers are common, and the

others are pretty rare.

Got it? Now we can go onto the next--no wait! There's more!

Yes, still more to know about scanf(). Does it never end? Try to

imagine how I feel writing about it!

So you know that “%d” stores into an int. But how do you store

into a long, short, or double?

Well, like in printf(), you can add a modifier before the type

specifier to tell scanf() that you have a longer or shorter type.

The following is a table of the possible modifiers:

h

The value to be parsed is a short int or short

unsigned. Example: %hd or %hu.

l

The value to be parsed is a long int or long

unsigned, or double (for %f

conversions.) Example: %ld, %lu, or %lf.

L

Introduction to Programming using C Page 225

The value to be parsed is a long long for integer types

or long double for float types. Example: %Ld, %Lu, or

%Lf.

*

Tells scanf() do to the conversion specified, but not

store it anywhere. It simply

discards the data as it reads it. This is what you use if you want

scanf() to eat some data but you don't want to store it

anywhere; you don't give scanf() an argument for

this conversion. Example: %*d.

Return Value

scanf() returns the number of items assigned into variables.

Since assignment into variables stops when given invalid input

for a certain format specifier, this can tell you if you've input all

your data correctly.

Also, scanf() returns EOF on end-of-file.

Example
int a;

long int b;

unsigned int c;

float d;

double e;

long double f;

char s[100];

scanf("%d", &a); // store an int

scanf(" %d", &a); // eat any whitespace,

then store an int

scanf("%s", s); // store a string

scanf("%Lf", &f); // store a long double

// store an unsigned, read all whitespace,

then store a long int:

Introduction to Programming using C Page 226

scanf("%u %ld", &c, &b);

// store an int, read whitespace, read

"blendo", read whitespace,

// and store a float:

scanf("%d blendo %f", &a, &d);

// read all whitespace, then store all

characters up to a newline

scanf(" %[^\n]", s);

// store a float, read (and ignore) an int,

then store a double:

scanf("%f %*d %lf", &d, &e);

// store 10 characters:

scanf("%10c", s);

See Also
sscanf(), vscanf(), vsscanf(), vfscanf()

1.8 gets(), fgets()

Read a string from console or file

Prototypes
#include <stdio.h>

char *fgets(char *s, int size, FILE

*stream);

char *gets(char *s);

Description

These are functions that will retrieve a newline-terminated string

from the console or a file.

In other normal words, it reads a line of text. The behavior is

slightly different, and, as such, so

is the usage. For instance, here is the usage of gets():

Don't use gets().

Introduction to Programming using C Page 227

Admittedly, rationale would be useful, yes? For one thing,

gets() doesn't allow you to

specify the length of the buffer to store the string in. This would

allow people to keep entering

data past the end of your buffer, and believe me, this would be

Bad News.

I was going to add another reason, but that's basically the

primary and only reason not to

use gets(). As you might suspect, fgets() allows you to

specify a maximum string length.

One difference here between the two functions: gets() will

devour and throw away

the newline at the end of the line, while fgets() will store it at

the end of your string (space

permitting).

Here's an example of using fgets() from the console, making

it behave more like

gets():

char s[100];

gets(s); // read a line (from stdin)

fgets(s, sizeof(s), stdin); // read a line

from stdin

In this case, the sizeof() operator gives us the total size of the

array in bytes, and since a

char is a byte, it conveniently gives us the total size of the array.

Of course, like I keep saying, the string returned from fgets()

probably has a newline at

the end that you might not want. You can write a short function

to chop the newline off, like so:

char *remove_newline(char *s)

Introduction to Programming using C Page 228

{

int len = strlen(s);

if (len > 0 && s[len-1] == '\n') // if

there's a newline

s[len-1] = '\0'; // truncate the string

return s;

}

So, in summary, use fgets() to read a line of text from the

keyboard or a file, and don't

use gets().

Return Value

Both fgets() and fgets() return a pointer to the string

passed.

On error or end-of-file, the functions return NULL.

Example

char s[100];

gets(s); // read from standard input (don't use

this--use fgets()!)

fgets(s, sizeof(s), stdin); // read 100 bytes

from standard input

fp = fopen("datafile.dat", "r"); // (you should

error-check this)

fgets(s, 100, fp); // read 100 bytes from the

file datafile.dat

fclose(fp);

fgets(s, 20, stdin); // read a maximum of 20

bytes from stdin

See Also
getc(), fgetc(), getchar(), puts(), fputs(), ungetc()

1.9 getc(), fgetc(), getchar()

Introduction to Programming using C Page 229

Get a single character from the console or from a file.

Prototypes

#include <stdio.h>

int getc(FILE *stream);

int fgetc(FILE *stream);

int getchar(void);

Description

All of these functions in one way or another, read a single

character from the console or

from a FILE. The differences are fairly minor, and here are the

descriptions:

getc() returns a character from the specified FILE. From a usage

standpoint, it's equivalent to the same fgetc() call, and fgetc() is a

little more common to see. Only the implementation of the two

functions differs.

fgetc() returns a character from the specified FILE. From a usage

standpoint, it's equivalent to the same getc() call, except that

fgetc() is a little more common to see. Only the implementation

of the two functions differs.

Yes, I cheated and used cut-n-paste to do that last paragraph.

getchar() returns a character from stdin. In fact, it's the same as

calling getc(stdin).

Return Value

All three functions return the unsigned char that they read, except

it's cast to an int.

If end-of-file or an error is encountered, all three functions return

EOF.

Example

// read all characters from a file,

outputting only the letter 'b's

Introduction to Programming using C Page 230

// it finds in the file

#include <stdio.h>

int main(void)

{

FILE *fp;

int c;

fp = fopen("datafile.txt", "r"); // error

check this!

// this while-statement assigns into c, and

then checks against EOF:

while((c = fgetc(fp)) != EOF) {

if (c == 'b') {

putchar(c);

}

}

fclose(fp);

return 0;

}

1.10 puts(), fputs()

Write a string to the console or to a file.

Prototypes
#include <stdio.h>

int puts(const char *s);

int fputs(const char *s, FILE *stream);

Description

Both these functions output a NUL-terminated string. puts()

outputs to the console, while

fputs() allows you to specify the file for output.

Return Value

Introduction to Programming using C Page 231

Both functions return non-negative on success, or EOF on error.

Example
// read strings from the console and save

them in a file

#include <stdio.h>

int main(void)

{

FILE *fp;

char s[100];

fp = fopen("datafile.txt", "w"); // error

check this!

while(fgets(s, sizeof(s), stdin) != NULL) {

// read a string

fputs(s, fp); // write it to the file we

opened

}

fclose(fp);

return 0;

}

1.11 putc(), fputc(), putchar()

Write a single character to the console or to a file.

Prototypes
#include <stdio.h>

int putc(int c, FILE *stream);

int fputc(int c, FILE *stream);

int putchar(int c);

Description

Introduction to Programming using C Page 232

All three functions output a single character, either to the console

or to a FILE.

putc() takes a character argument, and outputs it to the specified

FILE. fputc() does

exactly the same thing, and differs from putc() in implementation

only. Most people use

fputc().

putchar() writes the character to the console, and is the same as

calling putc(c,

stdout).

Return Value

All three functions return the character written on success, or

EOF on error.

Example

// print the alphabet

#include <stdio.h>

int main(void)

{

char i;

for(i = 'A'; i <= 'Z'; i++)

putchar(i);

putchar('\n'); // put a newline at the end

to make it pretty

return 0;

}

1.12 fseek(), rewind()

Position the file pointer in anticipition of the next read or write.

Prototypes
#include <stdio.h>

int fseek(FILE *stream, long offset, int

whence);

Introduction to Programming using C Page 233

void rewind(FILE *stream);

Description

When doing reads and writes to a file, the OS keeps track of

where you are in the file using

a counter generically known as the file pointer. You can

reposition the file pointer to a different

point in the file using the fseek() call. Think of it as a way to

randomly access you file.

The first argument is the file in question, obviously. offset

argument is the position that you want to seek to, and whence is

what that offset is relative to.

Of course, you probably like to think of the offset as being from

the beginning of the file. I

mean, “Seek to position 3490, that should be 3490 bytes from

the beginning of the file.” Well, it

can be, but it doesn't have to be. Imagine the power you're

wielding here. Try to command your

enthusiasm.

You can set the value of whence to one of three things:

SEEK_SET

offset is relative to the beginning of the file. This is

probably what you had in mind

anyway, and is the most commonly used value for whence.

SEEK_CUR

offset is relative to the current file pointer position.

So, in effect, you can say,

“Move to my current position plus 30 bytes,” or, “move to my

current position minus

20 bytes.”

SEEK_END

Introduction to Programming using C Page 234

offset is relative to the end of the file. Just like

SEEK_SET except from the other end

of the file. Be sure to use negative values for offset if

you want to back up from the

 end of the file, instead of going past the end into oblivion.

Speaking of seeking off the end of the file, can you do it? Sure

thing. In fact, you can seek

way off the end and then write a character; the file will be

expanded to a size big enough to hold

a bunch of zeros way out to that character.

Now that the complicated function is out of the way, what's this

rewind() that I briefly

mentioned? It repositions the file pointer at the beginning of the

file:

fseek(fp, 0, SEEK_SET); // same as rewind()

rewind(fp); // same as fseek(fp, 0,

SEEK_SET)

Return Value

For fseek(), on success zero is returned; -1 is returned on

failure.

The call to rewind() never fails.

Example
fseek(fp, 100, SEEK_SET); // seek to the

100th byte of the file

fseek(fp, -30, SEEK_CUR); // seek backward

30 bytes from the current pos

fseek(fp, -10, SEEK_END); // seek to the

10th byte before the end of file

fseek(fp, 0, SEEK_SET); // seek to the beginning of

the file

rewind(fp); // seek to the beginning of the file

See Also
ftell(), fgetpos(), fsetpos()

Introduction to Programming using C Page 235

Check Your Progress

Fill in the blanks

Q.1: You can reposition the file pointer to a different point in the file

using the………….

Q.2: …………………..writes the character to the console

Q.3: ……………returns a character from the specified FILE

Q.4: …………….returns a character from stdin.

Q.5: the ……….operator gives us the total size of the array in bytes, and

since a char is a byte, it conveniently gives us the total size of the array.

Q.6: ……………allows you to specify a maximum string length.

Q.7: The……….. family of functions reads data from the console or

from a FILE stream.

Q.8: You can use ……………to “re-open” the stream with a new file.

Q.9: The ……………..opens a file for reading or writing.

1.13 ftell()

Tells you where a particular file is about to read from or write to.

Prototypes
#include <stdio.h>

long ftell(FILE *stream);

Description

This function is the opposite of fseek(). It tells you where in the

file the next file

operation will occur relative to the beginning of the file.

It's useful if you want to remember where you are in the file,

fseek() somewhere else, and then come back later. You can take

the return value from ftell() and feed it back into fseek() (with

whence parameter set to SEEK_SET) when you want to return to

your previous position.

Return Value

Returns the current offset in the file, or -1 on error.

Introduction to Programming using C Page 236

Example

long pos;

// store the current position in variable

"pos":

pos = ftell(fp);

// seek ahead 10 bytes:

fseek(fp, 10, SEEK_CUR);

// do some mysterious writes to the file

do_mysterious_writes_to_file(fp);

// and return to the starting position,

stored in "pos":

fseek(fp, pos, SEEK_SET);

See Also
fseek(), rewind(), fgetpos(), fsetpos()

1.14 fgetpos(), fsetpos()

Get the current position in a file, or set the current position in a

file. Just like ftell() and fseek() for most systems.

Prototypes
#include <stdio.h>

int fgetpos(FILE *stream, fpos_t *pos);

int fsetpos(FILE *stream, fpos_t *pos);

Description

These functions are just like ftell() and fseek(), except instead of

counting in bytes, they use an opaque data structure to hold

positional information about the file. (Opaque, in this case,

means you're not supposed to know what the data type is made

up of.)

On virtually every system (and certainly every system that I

know of), people don't use these functions, using ftell() and

Introduction to Programming using C Page 237

fseek() instead. These functions exist just in case your system

can't remember file positions as a simple byte offset.

Since the pos variable is opaque, you have to assign to it using

the fgetpos() call itself.

Then you save the value for later and use it to reset the position

using fsetpos().

Return Value

Both functions return zero on success, and -1 on error.

Example
char s[100];

fpos_t pos;

fgets(s, sizeof(s), fp); // read a line

from the file

fgetpos(fp, &pos); // save the position

fgets(s, sizeof(s), fp); // read another

line from the file

fsetpos(fp, &pos); // now restore the

position to where we saved

See Also
fseek(), ftell(), rewind()

1.15 ungetc()

Pushes a character back into the input stream.

Prototypes
#include <stdio.h>

int ungetc(int c, FILE *stream);

Description

You know how getc() reads the next character from a file

stream? Well, this is the

opposite of that--it pushes a character back into the file stream so

that it will show up again on

Introduction to Programming using C Page 238

the very next read from the stream, as if you'd never gotten it

from getc() in the first place.

Why, in the name of all that is holy would you want to do that?

Perhaps you have a stream

of data that you're reading a character at a time, and you won't

know to stop reading until you

get a certain character, but you want to be able to read that

character again later. You can read

the character, see that it's what you're supposed to stop on, and

then ungetc() it so it'll show up on the next read.

Yeah, that doesn't happen very often, but there we are.

Here's the catch: the standard only guarantees that you'll be able

to push back one character. Some implementations might allow

you to push back more, but there's really no way to tell and still

be portable.

Return Value

On success, ungetc() returns the character you passed to it. On

failure, it returns EOF.

Example

// read a piece of punctuation, then

everything after it up to the next

// piece of punctuation. return the

punctuation, and store the rest

// in a string

//

// sample input: !foo#bar*baz

// output: return value: '!', s is "foo"

// return value: '#', s is "bar"

// return value: '*', s is "baz"

//

char read_punctstring(FILE *fp, char *s)

Introduction to Programming using C Page 239

{

char origpunct, c;

origpunct = fgetc(fp);

if (origpunct == EOF) // return EOF on end-

of-file

return EOF;

while(c = fgetc(fp), !ispunct(c) && c !=

EOF) {

*s++ = c; // save it in the string

}

*s = '\0'; // nul-terminate the string!

// if we read punctuation last, ungetc it

so we can fgetc it next

// time:

if (ispunct(c))

ungetc(c, fp);

}

return origpunct;

}

See Also
fgetc()

1.16 fread()

Read binary data from a file.

Prototypes

#include <stdio.h>

size_t fread(void *p, size_t size, size_t

nmemb, FILE *stream);

Description

You might remember that you can call fopen() with the “b”

flag in the open mode string

Introduction to Programming using C Page 240

to open the file in “binary” mode. Files open in not-binary

(ASCII or text mode) can be read

using standard character-oriented calls like fgetc() or

fgets(). Files open in binary mode are

typically read using the fread() function.

All this function does is says, “Hey, read this many things where

each thing is a certain

number of bytes, and store the whole mess of them in memory

starting at this pointer.”

This can be very useful, believe me, when you want to do

something like store 20 ints in a

file.

But wait--can't you use fprintf() with the “%d” format

specifier to save the ints to a

text file and store them that way? Yes, sure. That has the

advantage that a human can open the

file and read the numbers. It has the disadvantage that it's slower

to convert the numbers from

ints to text and that the numbers are likely to take more space

in the file. (Remember, an int is

likely 4 bytes, but the string “12345678” is 8 bytes.)

So storing the binary data can certainly be more compact and

faster to read.

(As for the prototype, what is this size_t you see floating

around? It's short for “size

type” which is a data type defined to hold the size of something.

Great--would I stop beating

around the bush already and give you the straight story?! Ok,

size_t is probably an int.)

Return Value

Introduction to Programming using C Page 241

This function returns the number of items successfully read. If

all requested items are read,

the return value will be equal to that of the parameter nmemb. If

EOF occurs, the return value

will be zero.

To make you confused, it will also return zero if there's an error.

You can use the functions

feof() or ferror() to tell which one really happened.

Example
// read 10 numbers from a file and store

them in an array

int main(void)

{

int i;

int n[10]

FILE *fp;

fp = fopen("binarynumbers.dat", "rb");

fread(n, sizeof(int), 10, fp); // read 10

ints

fclose(fp);

// print them out:

for(i = 0; i < 10; i++)

printf("n[%d] == %d\n", i, n[i]);

return 0;

}

See Also
fopen(), fwrite(), feof(), ferror()

1.17 fwrite()

Write binary data to a file.

Prototypes

Introduction to Programming using C Page 242

#include <stdio.h>

size_t fwrite(const void *p, size_t size,

size_t nmemb, FILE *stream);

Description

This is the counterpart to the fread() function. It writes blocks of

binary data to disk. For

a description of what this means, see the entry for fread().

Return Value

fwrite() returns the number of items successfully written, which

should hopefully be

nmemb that you passed in. It'll return zero on error.

Example

// save 10 random numbers to a file

int main(void)

{

int i;

int r[10];

FILE *fp;

// populate the array with random numbers:

for(i = 0; i < 10; i++) {

r[i] = rand();

}

// save the random numbers (10 ints) to the

file

fp = fopen("binaryfile.dat", "wb");

fwrite(r, sizeof(int), 10, fp); // write 10

ints

fclose(fp);

return 0;

}

Introduction to Programming using C Page 243

See Also
fopen(), fread()

1.18 feof(), ferror(), clearerr()

Determine if a file has reached end-of-file or if an error has

occurred.

Prototypes
#include <stdio.h>

int feof(FILE *stream);

int ferror(FILE *stream);

void clearerr(FILE *stream);

Description

Each FILE* that you use to read and write data from and to a file

contains flags that the system sets when certain events occur. If

you get an error, it sets the error flag; if you reach the end of the

file during a read, it sets the EOF flag. Pretty simple really.

The functions feof() and ferror() give you a simple way to test

these flags: they'll return non-zero (true) if they're set.

Once the flags are set for a particular stream, they stay that way

until you call clearerr()

to clear them.

Return Value

feof() and ferror() return non-zero (true) if the file has reached

EOF or there has been an error, respectively.

Example

// read binary data, checking for eof or

error

int main(void)

{

int a;

FILE *fp;

fp = fopen("binaryints.dat", "rb");

Introduction to Programming using C Page 244

// read single ints at a time, stopping on

EOF or error:

while(fread(&a, sizeof(int), 1, fp),

!feof(fp) && !ferror(fp)) {

printf("I read %d\n", a);

}

if (feof(fp))

printf("End of file was reached.\n");

if (ferror(fp))

printf("An error occurred.\n");

fclose(fp);

return 0;

}

See Also
 fopen(), fread()

1.19 perror()

Print the last error message to stderr

Prototypes
#include <stdio.h>

#include <errno.h> // only if you want to

directly use the "errno" var

void perror(const char *s);

Description

Many functions, when they encounter an error condition for

whatever reason, will set a global variable called errno for

you. errno is just an interger representing a unique error.

But to you, the user, some number isn't generally very useful.

For this reason, you can call perror() after an error occurs to

print what error has actually happened in a nice human-readable

string.

Introduction to Programming using C Page 245

And to help you along, you can pass a parameter, s, that will be

prepended to the error

string for you.

One more clever trick you can do is check the value of the

errno (you have to include errno.h to see it) for specific

errors and have your code do different things. Perhaps you want

to ignore certain errors but not others, for instance.

The catch is that different systems define different values for

errno, so it's not very portable. The standard only defines a few

math-related values, and not others. You'll have to check your

local man-pages for what works on your system.

Return Value

Returns nothing at all! Sorry!

Example

fseek() returns -1 on error, and sets errno, so let's use it. Seeking

on stdin makes no sense, so it should generate an error:

#include <stdio.h>

#include <errno.h> // must include this to

see "errno" in this example

int main(void)

{

if (fseek(stdin, 10L, SEEK_SET) < 0)

perror("fseek");

fclose(stdin); // stop using this stream

if (fseek(stdin, 20L, SEEK_CUR) < 0) {

// specifically check errno to see what

kind of

// error happened...this works on Linux,

but your

// mileage may vary on other systems!

if (errno == EBADF) {

Introduction to Programming using C Page 246

perror("fseek again, EBADF");

} else {

perror("fseek again");

}

}

return 0;

}

And the output is:

fseek: Illegal seek

fseek again, EBADF: Bad file descriptor

See Also

feof(), ferror(), clearerr()

1.20 remove()

Delete a file

Prototypes

#include <stdio.h>

int remove(const char *filename);

Description

Removes the specified file from the filesystem. It just deletes it.

Nothing magical. Simply

call this function and sacrifice a small chicken and the requested

file will be deleted.

Return Value

Returns zero on success, and -1 on error, setting errno.

Example

char *filename = "/home/beej/evidence.txt";

remove(filename);

remove("/disks/d/Windows/system.ini");

See Also

Introduction to Programming using C Page 247

 rename()

1.21 rename()

Renames a file and optionally moves it to a new location

Prototypes
#include <stdio.h>

int rename(const char *old, const char

*new);

Description

Renames the file old to name new. Use this function if you're

tired of the old name of the file, and you are ready for a change.

Sometimes simply renaming your files makes them feel new

again, and could save you money over just getting all new files!

One other cool thing you can do with this function is actually

move a file from one directory to another by specifying a

different path for the new name.

Return Value

Returns zero on success, and -1 on error, setting errno.

Example

rename("foo", "bar"); // changes the name

of the file "foo" to "bar"

// the following moves the file

"evidence.txt" from "/tmp" to

// "/home/beej", and also renames it to

"nothing.txt":

rename("/tmp/evidence.txt",

"/home/beej/nothing.txt");

See Also
remove()

1.22 tmpfile()

Create a temporary file

Introduction to Programming using C Page 248

Prototypes
#include <stdio.h>

FILE *tmpfile(void);

Description

This is a nifty little function that will create and open a

temporary file for you, and will

return a FILE* to it that you can use. The file is opened with

mode “r+b”, so it's suitable for

reading, writing, and binary data.

By using a little magic, the temp file is automatically deleted

when it is close()'d or when

your program exits. (Specifically, tmpfile() unlinks the file

right after it opens it. If you don't

know what that means, it won't affect your tmpfile() skill,

but hey, be curious! It's for your

own good!)

Return Value

This function returns an open FILE* on success, or NULL on

failure.

Example

#include <stdio.h>

int main(void)

{

FILE *temp;

char s[128];

temp = tmpfile();

fprintf(temp, "What is the frequency,

Alexander?\n");

rewind(temp); // back to the beginning

fscanf(temp, "%s", s); // read it back out

Introduction to Programming using C Page 249

fclose(temp); // close (and magically

delete)

return 0;

}

See Also
fopen()

fclose()

tmpnam()

1.23 tmpnam()

Generate a unique name for a temporary file

Prototypes
#include <stdio.h>

char *tmpnam(char *s);

Description

This function takes a good hard look at the existing files on your

system, and comes up

with a unique name for a new file that is suitable for temporary

file usage.

Let's say you have a program that needs to store off some data

for a short time so you

create a temporary file for the data, to be deleted when the

program is done running. Now

imagine that you called this file foo.txt. This is all well and

good, except what if a user

already has a file called foo.txt in the directory that you ran

your program from? You'd

overwrite their file, and they'd be unhappy and stalk you forever.

And you wouldn't want that,

now would you?

Ok, so you get wise, and you decide to put the file in /tmp so

that it won't overwrite any

Introduction to Programming using C Page 250

important content. But wait! What if some other user is running

your program at the same time

and they both want to use that filename? Or what if some other

program has already created that

file?

See, all of these scary problems can be completely avoided if

you just use tmpnam() to get

a safe-ready-to-use filename.

So how do you use it? There are two amazing ways. One, you

can declare an array (or

malloc() it--whatever) that is big enough to hold the

temporary file name. How big is that?

Fortunately there has been a macro defined for you, L_tmpnam,

which is how big the array must

be.

And the second way: just pass NULL for the filename.

tmpnam() will store the temporary

name in a static array and return a pointer to that. Subsequent

calls with a NULL argument will

overwrite the static array, so be sure you're done using it before

you call tmpnam() again.

Again, this function just makes a file name for you. It's up to you

to later fopen() the file

and use it.

One more note: some compilers warn against using tmpnam()

since some systems have

better functions (like the Unix function mkstemp().) You might

want to check your local

documentation to see if there's a better option. Linux

documentation goes so far as to say,

Introduction to Programming using C Page 251

“Never use this function. Use mkstemp() instead.”

I, however, am going to be a jerk and not talk about mkstemp()

because it's not in the

standard I'm writing about. Nyaah.

Return Value

Returns a pointer to the temporary file name. This is either a

pointer to the string you

passed in, or a pointer to internal static storage if you passed in

NULL. On error (like it can't find

any temporary name that is unique), tmpnam() returns NULL.

Example

char filename[L_tmpnam];

char *another_filename;

if (tmpnam(filename) != NULL)

printf("We got a temp file named:

\"%s\"\n", filename);

else

printf("Something went wrong, and we got

nothing!\n");

another_filename = tmpnam(NULL);

printf("We got another temp file named:

\"%s\"\n", another_filename);

printf("And we didn't error check it

because we're too lazy!\n");

On my Linux system, this generates the following output:
We got a temp file named: "/tmp/filew9PMuZ"

We got another temp file named:

"/tmp/fileOwrgPO"

And we didn't error check it because we're

too lazy!

See Also
fopen()

tmpfile()

Introduction to Programming using C Page 252

1.24 setbuf(), setvbuf()

Configure buffering for standard I/O operations

Prototypes
#include <stdio.h>

void setbuf(FILE *stream, char *buf);

int setvbuf(FILE *stream, char *buf, int

mode, size_t size);

Description

Now brace yourself because this might come as a bit of a

surprise to you: when you

printf() or fprintf() or use any I/O functions like that, it

does not normally work

immediately. For the sake of efficiency, and to irritate you, the

I/O on a FILE* stream is

buffered away safely until certain conditions are met, and only

then is the actual I/O performed.

The functions setbuf() and setvbuf() allow you to change

those conditions and the

buffering behavior.

So what are the different buffering behaviors? The biggest is

called “full buffering”,

wherein all I/O is stored in a big buffer until it is full, and then it

is dumped out to disk (or

whatever the file is). The next biggest is called “line buffering”;

with line buffering, I/O is

stored up a line at a time (until a newline ('\n') character is

encountered) and then that line

is processed. Finally, we have “unbuffered”, which means I/O is

processed immediately with

every standard I/O call.

Introduction to Programming using C Page 253

You might have seen and wondered why you could call

putchar() time and time again

and not see any output until you called putchar('\n'); that's

right--stdout is line-buffered!

Since setbuf() is just a simplified version of setvbuf(),

we'll talk about setvbuf()

first.

The stream is the FILE* you wish to modify. The standard

says you must make your call

to setvbuf() before any I/O operation is performed on the

stream, or else by then it might be

too late.

The next argument, buf allows you to make your own buffer

space (using malloc() or

just a char array) to use for buffering. If you don't care to do

this, just set buf to NULL.

Now we get to the real meat of the function: mode allows you to

choose what kind of

buffering you want to use on this stream. Set it to one of the

following:

_IOFBF

stream will be fully buffered.

_IOLBF

stream will be line buffered.

_IONBF

stream will be unbuffered.

Finally, the size argument is the size of the array you passed in

for buf...unless you passed NULL for buf, in which case it will

resize the existing buffer to the size you specify.

Introduction to Programming using C Page 254

Now what about this lesser function setbuf()? It's just like calling

setvbuf() with some specific parameters, except setbuf() doesn't

return a value. The following example shows the equivalency:

// these are the same:

setbuf(stream, buf);

setvbuf(stream, buf, _IOFBF, BUFSIZ); //

fully buffered

// and these are the same:

setbuf(stream, NULL);

setvbuf(stream, NULL, _IONBF, BUFSIZ); //

unbuffered

Return Value

setvbuf() returns zero on success, and nonzero on failure.

setbuf() has no return

value.

Example

FILE *fp;

char lineBuf[1024];

fp = fopen("somefile.txt", "r");

setvbuf(fp, lineBuf, _IOLBF, 1024); // set

to line buffering

// ...

fclose(fp);

fp = fopen("another.dat", "rb");

setbuf(fp, NULL); // set to unbuffered

// ...

fclose(fp);

See Also
fflush()

1.25 fflush()

Introduction to Programming using C Page 255

Process all buffered I/O for a stream right now

Prototypes
#include <stdio.h>

int fflush(FILE *stream);

Description

When you do standard I/O, as mentioned in the section on the

setvbuf() function, it is

usually stored in a buffer until a line has been entered or the

buffer is full or the file is closed.

Sometimes, though, you really want the output to happen right

this second, and not wait around

in the buffer. You can force this to happen by calling fflush().

The advantage to buffering is that the OS doesn't need to hit the

disk every time you call

fprintf(). The disadvantage is that if you look at the file on the

disk after the fprintf()

call, it might not have actually been written to yet. (“I called

fputs(), but the file is still zero

bytes long! Why?!”) In virtually all circumstances, the

advantages of buffering outweigh the

disadvantages; for those other circumstances, however, use

fflush().

Note that fflush() is only designed to work on output streams

according to the spec.

What will happen if you try it on an input stream? Use your

spooky voice: who knooooows!

Return Value

On success, fflush() returns zero. If there's an error, it returns

EOF and sets the error

condition for the stream (see ferror().)

Example

Introduction to Programming using C Page 256

In this example, we're going to use the carriage return, which is

'\r'. This is like newline ('\n'), except that it doesn't move to the

next line. It just returns to the front of the current line.

What we're going to do is a little text-based status bar like so

many command line programs implement. It'll do a countdown

from 10 to 0 printing over itself on the same line.

What is the catch and what does this have to do with fflush()?

The catch is that the terminal is most likely “line buffered” (see

the section on setvbuf() for more info), meaning that it won't

actually display anything until it prints a newline. But we're not

printing newlines; we're just printing carriage returns, so we

need a way to force the output to occur even though we're on the

same line. Yes, it's fflush()!

#include <stdio.h>

#include <unistd.h> // for prototype for

sleep()

int main(void)

{

int count;

for(count = 10; count >= 0; count--) {

printf("\rSeconds until launch: "); // lead

with a CR

if (count > 0)

printf("%2d", count);

else

printf("blastoff!\n");

// force output now!!

fflush(stdout);

// the sleep() function is non-standard,

but virtually every

Introduction to Programming using C Page 257

// system implements it--it simply delays

for the specificed

// number of seconds:

sleep(1);

}

return 0;

 }

See Also

setbuf(), setvbuf()

Check Your Progress

Q.10: Write true and false against the following.

i. fflush() returns NULL

ii. setvbuf() returns zero on success, and nonzero on failure.

iii. tmpnam() returns Not NULL

iv. rename() renames a file and optionally moves it to a new location

v. fwrite() write binary data to a file.

vi. ftell() Tells you where a particular file is about to read from or

write to.

1.26 Answer to Check Your Progress

Ans to Q.1: fseek() call.

Ans to Q.2: putchar()

Ans to Q.3: getc()

Ans to Q.4: getchar()

Ans to Q.5: sizeof()

Ans to Q.6: fgets()

Ans to Q.7: scanf()

Ans to Q.8: freopen()

Introduction to Programming using C Page 258

Ans to Q.9: fopen()

Ans to Q.10: i. False ii. True iii. False iv. True v. True vi. True

1.27Model Questions

2. What is the use of fopen()? Give an example .

3. What is the use of freopen()?Give an example .

4. What is the use gets() and fgets()? Explain with the help of

example.

5. What is the difference between getc(), fgetc() and getchar()?

6. Explain the fseek() and rewind().

7. Explain the following functions with the help of example

i. fgetpos() and fsetpos()

ii. ungetc()

iii. fread()

iv. fwrite()

v. feof(), ferror() and clearerr()

vi. remove()

vii. rename()

viii. setbuf() and setvbuf()

ix. fflush()

Introduction to Programming using C Page 259

Unit 12

 String Manipulation

1.1 Learning Objectives

1.2 Introduction

1.3 strlen()

1.4 strcmp(), strncmp()

1.5 strcat(), strncat()

1.6 strchr(), strrchr()

1.7 strcpy(), strncpy()

1.8 strspn(), strcspn()

1.9 strstr()

1.10 strtok()

1.11 Answer to Check Your Progress

1.12 Model Questions

1.1 Learning Objectives

After going through this unit, the learner will able to learn:

• strlen() function

• strcmp(), strncmp() function

• strcat(), strncat() function

• strchr(), strrchr() function

• strcpy(), strncpy() function

• strspn(), strcspn() function

• strstr() function

• strtok() function

1.2 Introduction

Introduction to Programming using C Page 260

As has been mentioned earlier in the guide, a string in C

is a sequence of bytes in memory, terminated by a NULL

character ('\0'). The NULL at the end is important, since it lets

all these string functions (and printf() and puts() and

everything else that deals with a string) know where the end of

the string actually is.

Fortunately, when you operate on a string using one of these

many functions available to you, they add the NULL terminator

on for you, so you actually rarely have to keep track of it

yourself. (Sometimes you do, especially if you're building a

string from scratch a character at a time or something.)

In this section you'll find functions for pulling substrings out of

strings, concatenating strings together, getting the length of a

string, and so forth and so on.

1.3 strlen()

Returns the length of a string.

Prototypes

#include <string.h>

size_t strlen(const char *s);

Description

This function returns the length of the passed null-terminated

string (not counting the NUL

character at the end). It does this by walking down the string and

counting the bytes until the

NUL character, so it's a little time consuming. If you have to get

the length of the same string

repeatedly, save it off in a variable somewhere.

Return Value

Returns the number of characters in the string.

Introduction to Programming using C Page 261

Example

char *s = "Hello, world!"; // 13 characters

// prints "The string is 13 characters

long.":

printf("The string is %d characters

long.\n", strlen(s));

1.4 strcmp(), strncmp()

Compare two strings and return a difference.

Prototypes

#include <string.h>

int strcmp(const char *s1, const char *s2);

int strncmp(const char *s1, const char *s2,

size_t n);

Description

Both these functions compare two strings. strcmp() compares

the entire string down to the end, while strncmp() only

compares the first n characters of the strings.

It's a little funky what they return. Basically it's a difference of

the strings, so if the strings are the same, it'll return zero (since

the difference is zero). It'll return non-zero if the strings differ;

basically it will find the first mismatched character and return

less-than zero if that character in s1 is less than the

corresponding character in s2. It'll return greater-than zero if that

character in s1 is greater than that in s2.

For the most part, people just check to see if the return value is

zero or not, because, more

often than not, people are only curious if strings are the same.

These functions can be used as comparison functions for qsort()

if you have an array of

char*s you want to sort.

Introduction to Programming using C Page 262

Return Value

Returns zero if the strings are the same, less-than zero if the first

different character in s1 is

less than that in s2, or greater-than zero if the first difference

character in s1 is greater than than

in s2.

Example

char *s1 = "Muffin";

char *s2 = "Muffin Sandwich";

char *s3 = "Muffin";

strcmp("Biscuits", "Kittens"); // returns <

0 since 'B' < 'K'

strcmp("Kittens", "Biscuits"); // returns >

0 since 'K' > 'B'

if (strcmp(s1, s2) == 0)

printf("This won't get printed because the

strings differ");

if (strcmp(s1, s3) == 0)

printf("This will print because s1 and s3

are the same");

// this is a little weird...but if the

strings are the same, it'll

// return zero, which can also be thought

of as "false". Not-false

// is "true", so (!strcmp()) will be true

if the strings are the

// same. yes, it's odd, but you see this

all the time in the wild

// so you might as well get used to it:

if (!strcmp(s1, s3))

printf("The strings are the same!")

Introduction to Programming using C Page 263

if (!strncmp(s1, s2, 6))

printf("The first 6 characters of s1 and s2

are the same");

See Also
 memcmp(), qsort()

1.5 strcat(), strncat()

Concatenate two strings into a single string.

Prototypes

#include <string.h>

int strcat(const char *dest, const char

*src);

int strncat(const char *dest, const char

*src, size_t n);

Description

“Concatenate”, for those not in the know, means to “stick

together”. These functions take two strings, and stick them

together, storing the result in the first string.

These functions don't take the size of the first string into account

when it does the concatenation. What this means in practical

terms is that you can try to stick a 2 megabyte string into a 10

byte space. This will lead to unintended consequences, unless

you intended to lead to unintended consequences, in which case

it will lead to intended unintended consequences.

Technical banter aside, your boss and/or professor will be irate.

If you want to make sure you don't overrun the first string, be

sure to check the lengths of the strings first and use some highly

technical subtraction to make sure things fit. You can actually

only concatenate the first n characters of the second string by

Introduction to Programming using C Page 264

using strncat() and specifying the maximum number of

characters to copy.

Return Value

Both functions return a pointer to the destination string, like

most of the string-oriented functions.

Example
char dest[20] = "Hello";

char *src = ", World!";

char numbers[] = "12345678";

printf("dest before strcat: \"%s\"\n",

dest); // "Hello"

strcat(dest, src);

printf("dest after strcat: \"%s\"\n",

dest); // "Hello, world!"

strncat(dest, numbers, 3); // strcat first

3 chars of numbers

printf("dest after strncat: \"%s\"\n",

dest); // "Hello, world!123"

Notice I mixed and matched pointer and array notation there

with src and numbers; this is

just fine with string functions.

See Also
strlen()

Check Your Progress

Fill in the blanks

Q.1: …………….is used to Concatenate two strings into a single

string.

Q.2: ……………….only compares the first n characters of the

strings.

Q.3: …………………returns the length of a string.

Q.4: A string in C is a sequence of bytes in memory, terminated

by a…………………

Introduction to Programming using C Page 265

1.6 strchr(), strrchr()

Find a character in a string.

Prototypes

#include <string.h>

char *strchr(char *str, int c);

char *strrchr(char *str, int c);

Description

The functions strchr() and strrchr find the first or last

occurrence of a letter in a string, respectively. (The extra “r” in

strrchr() stands for “reverse”--it looks starting at the end of the

string and working backward.) Each function returns a pointer to

the char in question, or NULL if the letter isn't found in the

string.

Quite straight forward.

One thing you can do if you want to find the next occurrence of

the letter after finding the first, is call the function again with the

previous return value plus one. (Remember pointer arithmetic?)

Or minus one if you're looking in reverse. Don't accidentally go

off the end of the string!

Return Value

Returns a pointer to the occurance of the letter in the string, or

NULL if the letter is not

found.

Example

// "Hello, world!"

// ^ ^

// A B

char *str = "Hello, world!";

char *p;

p = strchr(str, ','); // p now points at

position A

Introduction to Programming using C Page 266

p = strrchr(str, 'o'); // p now points at

position B

// repeatedly find all occurances of the

letter 'B'

char *str = "A BIG BROWN BAT BIT BEEJ";

char *p;

for(p = strchr(str, 'B'); p != NULL; p =

strchr(p + 1, 'B')) {

printf("Found a 'B' here: %s\n", p);

}

// output is:

//

// Found a 'B' here: BIG BROWN BAT BIT BEEJ

// Found a 'B' here: BROWN BAT BIT BEEJ

// Found a 'B' here: BAT BIT BEEJ

// Found a 'B' here: BIT BEEJ

// Found a 'B' here: BEEJ

1.7 strcpy(), strncpy()

Copy a string

Prototypes

#include <string.h>

char *strcpy(char *dest, char *src);

char *strncpy(char *dest, char *src, size_t

n);

Description

These functions copy a string from one address to another,

stopping at the NUL terminator on the srcstring.

strncpy() is just like strcpy(), except only the first n characters

are actually copied.

Introduction to Programming using C Page 267

Beware that if you hit the limit, n before you get a NUL

terminator on the src string, your dest

string won't be NUL-terminated. Beware! BEWARE!

(If the src string has fewer than n characters, it works just like

strcpy().)

You can terminate the string yourself by sticking the '\0' in there

yourself:

char s[10];

char foo = "My hovercraft is full of

eels."; // more than 10 chars

strncpy(s, foo, 9); // only copy 9 chars

into positions 0-8

s[9] = '\0'; // position 9 gets the

terminator

Return Value

Both functions return dest for your convenience, at no extra

charge.

Example

char *src = "hockey hockey hockey hockey

hockey hockey hockey hockey";

char dest[20];

int len;

strcpy(dest, "I like "); // dest is now "I

like "

len = strlen(dest);

// tricky, but let's use some pointer

arithmetic and math to append

// as much of src as possible onto the end

of dest, -1 on the length to

// leave room for the terminator:

Introduction to Programming using C Page 268

strncpy(dest+len, src, sizeof(dest)-len-1);

// remember that sizeof() returns the size

of the array in bytes

// and a char is a byte:

dest[sizeof(dest)-1] = '\0'; // terminate

// dest is now: v null terminator

// I like hockey hocke

// 01234567890123456789012345

See Also

 memcpy(), strcat(), strncat()

1.8 strspn(), strcspn()

Return the length of a string consisting entirely of a set of

characters, or of not a set of

characters.

Prototypes

#include <string.h>

size_t strspn(char *str, const char

*accept);

size_t strcspn(char *str, const char

*reject);

Description

strspn() will tell you the length of a string consisting entirely

of the set of characters in accept. That is, it starts walking

down str until it finds a character that is not in the set (that is,

a character that is not to be accepted), and returns the length of

the string so far.

strcspn() works much the same way, except that it walks

down str until it finds a character in the reject set (that is, a

character that is to be rejected.) It then returns the length

Introduction to Programming using C Page 269

of the string so far.

Return Value

The lenght of the string consisting of all characters in accept

(for strspn()), or the length of the string consisting of all

characters except reject (for strcspn()

Example

char str1[] = "a banana";

char str2[] = "the bolivian navy on

manuvers in the south pacific";

// how many letters in str1 until we reach

something that's not a vowel?

n = strspn(str1, "aeiou"); // n == 1, just

"a"

// how many letters in str1 until we reach

something that's not a, b,

// or space?

n = strspn(str1, "ab "); // n == 4, "a ba"

// how many letters in str2 before we get a

"y"?

n = strcspn(str2, "y"); // n = 16, "the

bolivian nav"

See Also

 strchr(), strrchr()

1.9 strstr()

Find a string in another string.

Prototypes

#include <string.h>

char *strstr(const char *str, const char *substr);

Description

Let's say you have a big long string, and you want to find a

word, or whatever substring

strikes your fancy, inside the first string. Then strstr() is for you!

It'll return a pointer to the

substr within the str!

Introduction to Programming using C Page 270

Return Value

You get back a pointer to the occurance of the substr inside the

str, or NULL if the

substring can't be found.

Example

char *str = "The quick brown fox jumped

over the lazy dogs.";

char *p;

p = strstr(str, "lazy");

printf("%s\n", p); // "lazy dogs."

// p is NULL after this, since the string

"wombat" isn't in str:

p = strstr(str, "wombat");

See Also

strchr(), strrchr(), strspn(), strcspn()

1.10 strtok()

Tokenize a string.

Prototypes

#include <string.h>

char *strtok(char *str, const char *delim);

Description

If you have a string that has a bunch of separators in it, and you

want to break that string up

into individual pieces, this function can do it for you.

The usage is a little bit weird, but at least whenever you see the

function in the wild, it's

consistently weird.

Basically, the first time you call it, you pass the string, str that

you want to break up in as the first argument. For each

subsequent call to get more tokens out of the string, you pass

Introduction to Programming using C Page 271

NULL. This is a little weird, but strtok() remembers the string

you originally passed in, and continues to strip tokens off for

you.

Note that it does this by actually putting a NUL terminator after

the token, and then returning a pointer to the start of the token.

So the original string you pass in is destroyed, as it were. If you

need to preserve the string, be sure to pass a copy of it to

strtok() so the original isn't destroyed.

Return Value

A pointer to the next token. If you're out of tokens, NULL is

returned.

Example

// break up the string into a series of

space or

// punctuation-separated words

char *str = "Where is my bacon, dude?";

char *token;

// Note that the following if-do-while

construct is very very

// very very very common to see when using

strtok().

// grab the first token (making sure there

is a first token!)

if ((token = strtok(str, ".,?! ")) != NULL)

{

do {

printf("Word: \"%s\"\n", token);

// now, the while continuation condition

grabs the

// next token (by passing NULL as the first

param)

Introduction to Programming using C Page 272

// and continues if the token's not NULL:

} while ((token = strtok(NULL, ".,?! ")) !=

NULL);

}

// output is:

//

// Word: "Where"

// Word: "is"

// Word: "my"

// Word: "bacon"

// Word: "dude"

//

See Also
strchr(), strrchr(), strspn(), strcspn()

Check Your Progress

Q.5:Write true and false against the following.

i. strcpy() is used to Tokenize a string.

ii. strstr() is used to find a string in another string.

iii. strchr() and strncpy() is used to copy a string.

iv. The functions strchr() and strrchr find the first or

last occurrence of a letter in a string, respectively

1.11 Answer to Check Your Progress

Ans to Q.1: strcat() and strncat()

Ans to Q.2: strncmp()

Introduction to Programming using C Page 273

Ans to Q.3: strlen()

Ans to Q.4: NULL character ('\0')

Ans to Q.5: i. False ii. True iii. False iv. True

1.12 Model Questions

1. What is the use of NULL character ('\0')?

2. Define strlen() function with the help of example.

3. What is the difference btween strcmp() and strncmp()?

4. Explain strchr() and strrchr() with the help of example.

5. Define strstr() function with example.

Unit 13

Mathematical Functions

1.1 Learning Objectives

1.2 Introduction

Introduction to Programming using C Page 274

1.3 sin(), sinf(), sinl()

1.4 cos(), cosf(), cosl()

1.5 tan(), tanf(), tanl()

1.6 asin(), asinf(), asinl()

1.7 acos(), acosf(), acosl()

1.8 atan(), atanf(), atanl(), atan2(), atan2f(), atan2l()

1.9 sqrt()

1.10 Answer to Check Your Progress

1.1 Learning Objectives

After going through this unit, the learner will able to learn;

• About sin(), sinf(), sinl() function

• About cos(), cosf(), cosl()function

Introduction to Programming using C Page 275

• About tan(), tanf(), tanl() function

• About asin(), asinf(), asinl()function

• About acos(), acosf(), acosl()function

• About atan(), atanf(), atanl(), atan2(), atan2f(), atan2l()

function

• About sqrt() function

1.2 Introduction

It's your favorite subject: Mathematics! Hello, I'm Doctor

Math, and I'll be making math FUN and EASY!

 [vomiting sounds]

Ok, I know math isn't the grandest thing for some of you out

there, but these are merely functions that quickly and easily do

math you either know, want, or just don't care about. That

pretty much covers it.

For you trig fans out there, we've got all manner of things,

including sine, cosine, tangent, and, conversely, arc sine, arc

cosine, and arc tangent. That's very exciting.

And for normal people, there is a slurry of your run-of-the-mill

functions that will serve your general purpose mathematical

needs, including absolute value, hypotenuse length, square

root, cube root, and power.

In short, you're a fricking MATHEMATICAL GOD!

Oh wait, before then, I should tell you that the trig functions

have three variants with different suffixes. The “f” suffix (e.g.

sinf()) returns a float, while the “l” suffix (e.g. sinl()) returns a

massive and nicely accurate long double. Normal sin() just

returns a double. These are extensions to ANSI C, but they

should be supported by modern compilers.

Introduction to Programming using C Page 276

Also, there are several values that are defined in the math.h

header file.

M_E

e

M_LOG2E

log_2 e

M_LOG10E

log_10 e

M_LN2

log_e 2

M_LN10

log_e 10

M_PI

pi

M_PI_2

pi/2

M_PI_4

pi/4

M_1_PI

1/pi

M_2_PI

2/pi

M_2_SQRTPI

2/sqrt(pi)

M_SQRT2

 sqrt(2)

M_SQRT1_2

 1/sqrt(2)

1.3 sin(), sinf(), sinl()

Calculate the sine of a number.

Prototypes
#include <math.h>

Introduction to Programming using C Page 277

double sin(double x);

float sinf(float x);

long double sinl(long double x);

Description

Calculates the sine of the value x, where x is in radians.

For those of you who don't remember, radians are another way

of measuring an angle, just

like degrees. To convert from degrees to radians or the other way

around, use the following

code:

degrees = radians * 180.0f / M_PI;

radians = degrees * M_PI / 180;

Return Value
Returns the sine of x. The variants return different types.

Example
double sinx;

long double ldsinx;

sinx = sin(3490.0); // round and round we

go!

ldsinx = sinl((long double)3.490);

See Also
cos(), tan(), asin()

1.4 cos(), cosf(), cosl()

Calculate the cosine of a number.

Prototypes

#include <math.h>

double cos(double x)

float cosf(float x)

long double cosl(long double x)

Description

Calculates the cosine of the value x, where x is in radians.

For those of you who don't remember, radians are another way

of measuring an angle, just

like degrees. To convert from degrees to radians or the other way

around, use the following

code:

Introduction to Programming using C Page 278

degrees = radians * 180.0f / M_PI;

radians = degrees * M_PI / 180;

Return Value

Returns the cosine of x. The variants return different types.

Example

double sinx;

long double ldsinx;

sinx = sin(3490.0); // round and round we

go!

ldsinx = sinl((long double)3.490);

See Also

 sin(), tan(), acos()

Check Your Progress

Choose the Correct one

1. The cos function computes the cosine of x.

A. measured in radians

B. measured in degrees

C. measured in gradian

D. measured in milliradian

2. Which of the following header declares mathematical functions and

macros?

A. math.h

B. assert.h

C. stdmat. H

D. stdio. H

3. What type of inputs are accepted by mathematical functions?

A. Short

B. Int

C. Float

D. double

4. Which of the following is not a valid mathematical function?

A. frexp(x);

Introduction to Programming using C Page 279

B. atan2(x,y);

C. srand(x);

D. fmod(x);

1.5 tan(), tanf(), tanl()

Calculate the tangent of a number.

Prototypes

#include <math.h>

double tan(double x)

float tanf(float x)

long double tanl(long double x)

Description

Calculates the tangent of the value x, where x is in radians.

For those of you who don't remember, radians are another way

of measuring an angle, just like degrees. To convert from

degrees to radians or the other way around, use the following

code:

degrees = radians * 180.0f / M_PI;

radians = degrees * M_PI / 180;

Return Value

Returns the tangent of x. The variants return different types.

Example

double tanx;

long double ldtanx;

tanx = tan(3490.0); // round and round we

go!

ldtanx = tanl((long double)3.490);

See Also

 sin(), cos(), atan(), atan2()

Introduction to Programming using C Page 280

1.6 asin(), asinf(), asinl()

Calculate the arc sine of a number.

Prototypes

#include <math.h>

double asin(double x);

float asinf(float x);

long double asinl(long double x);

Description

Calculates the arc sine of a number in radians. (That is,

the value whose sine is x.) The number must be in the range -1.0

to 1.0.

For those of you who don't remember, radians are another way

of measuring an angle, just like degrees. To convert from

degrees to radians or the other way around, use the following

code:

degrees = radians * 180.0f / M_PI;

radians = degrees * M_PI / 180;

Return Value

Returns the arc sine of x, unless x is out of range. In that case,

errno will be set to EDOM

and the return value will be NaN. The variants return different

types.

Example

double asinx;

long double ldasinx;

asinx = asin(0.2);

ldasinx = asinl((long double)0.3);

See Also

 acos(), atan(), atan2(), sin()

Introduction to Programming using C Page 281

1.7 acos(), acosf(), acosl()

Calculate the arc cosine of a number.

Prototypes

#include <math.h>

double acos(double x);

float acosf(float x);

long double acosl(long double x);

Description

Calculates the arc cosine of a number in radians. (That is, the

value whose cosine is x.) The

number must be in the range -1.0 to 1.0.

For those of you who don't remember, radians are another way

of measuring an angle, just

like degrees. To convert from degrees to radians or the other way

around, use the following

code:

degrees = radians * 180.0f / M_PI;

radians = degrees * M_PI / 180;

Return Value

Returns the arc cosine of x, unless x is out of range. In that case,

errno will be set to

EDOM and the return value will be NaN. The variants return

different types.

Example

double acosx;

long double ldacosx;

acosx = acos(0.2);

ldacosx = acosl((long double)0.3);

See Also

 asin(), atan(), atan2(), cos()

Introduction to Programming using C Page 282

1.8 atan(), atanf(), atanl(), atan2(), atan2f(), atan2l()

Calculate the arc tangent of a number.

Prototypes

#include <math.h>

double atan(double x);

float atanf(float x);

long double atanl(long double x);

double atan2(double y, double x);

float atan2f(float y, float x);

long double atan2l(long double y, long

double x);

Description

Calculates the arc tangent of a number in radians. (That is, the

value whose tangent is x.)

The atan2() variants are pretty much the same as using atan()

with y/x as the argument...except that atan2() will use those

values to determine the correct quadrant of the

result.

For those of you who don't remember, radians are another way

of measuring an angle, just like degrees. To convert from

degrees to radians or the other way around, use the following

code:

degrees = radians * 180.0f / M_PI;

radians = degrees * M_PI / 180;

Return Value

The atan() functions return the arc tangent of x, which will be

between PI/2 and -PI/2.

The atan2() functions return an angle between PI and -PI.

Example

double atanx;

Introduction to Programming using C Page 283

long double ldatanx;

atanx = atan(0.2);

ldatanx = atanl((long double)0.3);

atanx = atan2(0.2);

ldatanx = atan2l((long double)0.3);

See Also

tan(), asin(), atan()

1.9 sqrt()

Calculate the square root of a number

Prototypes

#include <math.h>

double sqrt(double x);

float sqrtf(float x);

long double sqrtl(long double x);

Description

Computes the square root of a number. To those of you who

don't know what a square root is, I'm not going to explain.

Suffice it to say, the square root of a number delivers a value that

when squared (multiplied by itself) results in the original

number.

Ok, fine--I did explain it after all, but only because I wanted to

show off. It's not like I'm giving you examples or anything, such

as the square root of nine is three, because when you

multiply three by three you get nine, or anything like that. No

examples. I hate examples!

And I suppose you wanted some actual practical information

here as well. You can see the usual trio of functions here--they

all compute square root, but they take different types as

arguments. Pretty straightforward, really.

Return Value

Introduction to Programming using C Page 284

Returns (and I know this must be something of a surprise to you)

the square root of x. If

you try to be smart and pass a negative number in for x, the

global variable errno will be set to

EDOM (which stands for DOMain Error, not some kind of

cheese.)

Example

// example usage of sqrt()

float something = 10;

double x1 = 8.2, y1 = -5.4;

double x2 = 3.8, y2 = 34.9;

double dx, dy;

printf("square root of 10 is %.2f\n",

sqrtf(something));

dx = x2 - x1;

dy = y2 - y1;

printf("distance between points (x1, y1)

and (x2, y2): %.2f\n",

sqrt(dx*dx + dy*dy));

And the output is:

square root of 10 is 3.16

distance between points (x1, y1) and (x2, y2): 40.54

See Also
 hypot()

Check Your Progress

Q.5: Fill in the blanks

i. …………….is used to calculate the square root of a

number.

ii. ……………….is used to calculate the arc tangent of

a number.

Introduction to Programming using C Page 285

1.10 Answer to Check Your Progress

Ans to Q.1: A. measured in radians

Ans to Q.2: A. math.h

Ans to Q.3: D. double

Ans to Q.4: D. fmod(x);

Ans to Q.5: i. sqrt() ii. atan(), atanf(), atanl(), atan2(), atan2f()

and atan2l() iii. acos(), acosf(), acosl() iv. asin(), asinf(), asinl()

v. tan(), tanf(), tanl()

1.11 Model Questions

1. Define sin(), sinf() and sinl() function with an example

2. Explain cos(), cosf() and cosl() function with an example.

3. What is the use of tan(), tanf() and tanl() funcation?

4. Define sqrt() funcation witn an example.

iii. ……………………is used to calculate the arc cosine

of a number.

iv. ……………………………is used to calculate the arc

sine of a number.

v. …………………………………..is used to calculate

the tangent of a number.

Introduction to Programming using C Page 286

5. What is the use of the following functions give an example

of each function?

i. atan(), atanf(), atanl(), atan2(), atan2f() and atan2l()

ii. acos(), acosf() and acosl()

